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In this paper, a simple and fast synchronization-transmission technology is designed to realize the 
synchronization transmission of a laser phase-conjugate wave to a target signal. First, the nonlinear ef-
fects of a laser phase-conjugate wave are analyzed. On this basis, a unique synchronization-transmission 
technology is designed. Finally, the effectiveness of the synchronization-transmission technology is 
verified by numerical calculation. This technology does not need to calculate the Lyapunov exponent 
of the system, nor to design the Lyapunov function. Moreover, the technology has no limitation on the 
selection of the target signal.
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I. INTRODUCTION

A laser phase-conjugation wave is a new light-wave 
field generated by four-wave mixing, three-wave mixing, 
or stimulated scattering in nonlinear optical media. Because 
the phase-conjugate wave can compensate for the wave-
front distortion of a laser system and yield high-brightness 
laser output, it shows attractive application prospects in op-
tical communication, image processing, real-time informa-
tion processing, and many other areas [1–5]. In particular, 
the use of laser systems such as the phase-conjugated wave 
has a unique role in remote communication, and in syn-
chronization transmission and conversion of a relay signal. 
Therefore, the related research in this field has become a 
hot spot. People have done fruitful research and designed 
many effective synchronization-transmission technologies, 
including the master stability function criterion [6], adap-
tive control [7, 8], pinning technique [9], impulsive control 
[10], the open-loop and closed-loop technique [11], etc. 

There are many types of synchronization transmission, such 
as complete synchronization, cluster synchronization, lag 
synchronization, and finite-time synchronization [12–16].

Although there are all kinds of transmission technologies 
mentioned above for the synchronization transmission of a 
signal, the criteria for realizing synchronization transmis-
sion are nothing more than calculating the Lyapunov expo-
nent of the system and designing the Lyapunov function. 
However, for nonlinear systems such as a phase-conjugate 
wave, the calculation of the Lyapunov exponent and the 
design of the Lyapunov function are very complicated, 
which is not conducive to practical application. Therefore, 
it is necessary to improve the original synchronization-
transmission technologies and propose new, practical, and 
effective synchronization-transmission schemes.

Based on the above discussion, we design a simple and 
fast synchronization-transmission technology to realize the 
synchronization transmission of a laser phase-conjugate 
wave to a target signal. The features of this technology are 
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that one does not need to calculate the Lyapunov exponent 
of the system, nor to design the Lyapunov function. The 
only work needed is to determine the range of adjustable 
parameters. Moreover, the technology has no limitation on 
the selection of the target signal.

This work is presented as follows: In Section 2, we ana-
lyze the nonlinear effects of a laser phase-conjugate wave. 
Section 3 gives the synchronization-transmission criterion. 
At last, conclusions are summarized.

II. NONLINEAR EFFECTS OF  
A LASER PHASE-CONJUGATE WAVE

The structure of the phase-conjugate resonator is shown 
in Fig. 1. It is composed of a normal mirror (NM), a phase-
conjugate mirror (PCM), and a lossless Kerr medium that 
can achieve multilevel scattering as a phase-conjugate me-
dium.

In Fig. 1, A1 and A2 are two pump beams in the process 
of four-wave mixing. The detection light field is A4, and its 
phase-conjugate wave is A3. For the lossless Kerr medium 
of the phase-conjugate mirror, the Raman-Nath approxima-
tion is adopted, and the scattered lights in the zeroth-order 
and first-order approximations are, respectively [17]:
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where J0 and J1 are the zeroth-order and first-order Bessel 
functions, respectively. Based on Eqs. (1) and (2), an itera-
tive mapping can be constructed for the detection light field 
A4. If the phase of the probe field A4 is θ(n) and the inten-
sity is I(n) = |A4 (t + nτ)|2, then the iterative mapping can be 
obtained for 0th-order reflection:
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For first-order reflection, the form of the mapping is:
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where L is the cavity length, R is the reflectivity of the or-
dinary mirror, 2kL is the phase shift of the light in the cav-
ity, I1 and I2 are the intensities of the two pumps, θ 1 and θ 2 
are the phases of the two pumps, and n is the iteration step. 
Here we only consider the light intensity, refer to x(n), and 
let x(n) = 4I2I(n), M = 4RI2I1; Then Eqs. (3) and (5) can be 
expressed as
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If we consider the threshold effect or switching behavior, 
we can get the mapping with two parameters:
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where B is the threshold parameter.
We use numerical simulation to show the nonlinear ef-

fects of a phase-conjugated wave. First, the evolution of 
the state variable with the threshold parameter B in the 
zeroth-order Bessel function is given when the pump-light 
intensity M = 10, as shown in Fig. 2. It can be seen that the 
system begins in a single-period state, and through period-
doubling bifurcation enters the two-period and four-period 
states near the threshold-parameter values B = −2.35 and B 
= −0.35, respectively. The period merger occurs near B = 
2.3. When B = 2.65 the two-period curves jump, and then 
these nonlinear effects continue to appear.

When the pump intensity M = 15, the nonlinear effects 
of the laser phase-conjugate wave are more abundant. Fig-
ure 3 shows that the system can not only exhibit nonlinear 
effects such as period-doubling bifurcation and period 
merging, but also exhibits chaotic behavior with random-

 

  

NM PCM

FIG. 1. Structure of a phase-conjugate resonator.
FIG. 2. Evolution of state variables with threshold parameter 
B (M = 10).
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ness when the threshold parameter B is between −1 and 1.7. 
When the pump intensity M takes on other values, these 
nonlinear effects will also appear.

III. MECHANISM OF SIGNAL 
SYNCHRONIZATION TRANSMISSION

We use the laser phase-conjugate wave to transmit the 
target signal synchronously. The transmission system is
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where φ(n) is the control input.
Suppose the target signal is sent by

s(n + 1) = f [s(n)]                 .      (10) 

  

. (10)

If the error between the state variable of the transmission 
system and the target signal is defined as e(n) = x(n) – s(n), 
then the following relation can be obtained:

2 1/2
0( 1) {[ ( ) ] } [ ( )] ( )ϕ+ = − − +e n MJ x n B f s n n   .   (11) 

  

. (11)

When lim ( ) ( ) 0
n

x n s n
→∞

− →
 
, the laser phase-conjugate wave 

can transmit the target signal synchronously. The above for-
mula is equivalent to the inequality |e(n + 1)| < |e(n)|. Obvi-
ously, the inequality can be decomposed into the following 
two expressions.
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We design a control input
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where δ  is the adjustable parameters.
By substituting Eqs. (11) and (14) into (12), the follow-

ing relation can be deduced:
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It can be seen that the parameter δ  must satisfy δ  < 1.
Similarly, by substituting Eqs. (11) and (14) into (13), 

the following relation can be deduced.
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It can be seen that the parameter δ  must satisfy δ  > −1.
Since the synchronization transmission between the laser 

phase-conjugate wave and the target signal must satisfy 
Eqs. (12) and (13), the range of the adjustable parameters. δ  
is determined:

−1 <δ < 1            .            (17) 

  

. (17)

We use numerical simulation to verify the effectiveness 
of the above synchronization-transmission technology. The 
target signal is taken arbitrarily, and here we take the Gibbs 
laser model [18],

2( 1) sin ( ( ) )bs n A s n s+ = −             .            (18) 

  

, (18)

where A and sb are the parameters, with A = 3 and sb = 0.85π .
The signal-transmission system is described by Eq. (9), 

the control input is described by Eq. (14), and the adjustable 
parameters δ  is arbitrarily taken to be 0.8, within the value 
range determined. The error between the state variable of 
the transmission system and the target signal is shown in 
Fig. 4. It can be seen that as long as the value of δ  is within 
the determined range, the error tends to zero steadily after 
a short time evolution, which means that as a transmission 
system, the laser phase-conjugate wave has effectively 
transmitted the target signal.

To demonstrate that this technology has no limitation 
on the selection of target signal, we choose the laser phase-
conjugate wave to replace the Gibbs laser model as the tar-
get signal:

2 1/2
0( 1) {[ ( ) ] }+ = −s n MJ s n B                           .      (19) . (19)

We repeat the above simulation process with all system 
parameters unchanged, and the adjustable parameters δ  
arbitrarily taken to be −0.6, within the value range deter-
mined. From Fig. 5, it can be observed that the error still 
tends to zero steadily, which means that the stability of sig-
nal synchronization transmission is still quite ideal.

FIG. 3. Evolution of state variables with threshold parameter 
B (M = 15).
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IV. CONCLUSIONS

We have analyzed the nonlinear effects of a laser phase-
conjugate wave and completed synchronization transmis-
sion of the laser phase-conjugate wave to the target signal. 
The results show that the laser phase-conjugate wave can 
exhibit not only period-doubling bifurcation and period 
merging, but also chaotic behavior with randomness. 
Furthermore, as a transmission system the laser phase-
conjugate wave can effectively transmit the target signal, as 
long as the value of the adjustable parameters is within the 
determined range.
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