과제정보
본 연구 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[No. 2020-0-00014, 결함 허용 논리양자큐빗 컴퓨팅 환경을 제공하는 양자운영체제 원천기술 개발].
참고문헌
- 이종현 외, "양자 오류 정정 부호와 서피스 부호," 전자공학회지, 제46권 제9호, 2019, pp. 738-745.
- 황용수 외, "결함허용 양자컴퓨팅 시스템 기술 연구개발 동향," 전자통신동향분석, 제37권 제2호, 2022, pp. 1-10.
- P. Das et al., "A scalable decoder micro-architecture for fault-tolerant quantum computing," arXiv preprint, CoRR, 2020, arXiv: 2001.06598.
- D. Poulin, "Optimal and efficient decoding of concatenated quantum block codes," Phys. Rev. A, vol. 74, no. 5, 2006, article no. 052333.
- K. Meinerz et al., "Scalable neural decoder for topological surface codes," Phys. Rev. Lett., vol. 128, 2021, article no. 080505.
- R.E. Tarjan, "Efficiency of a good but not linear set union algorithm," J. ACM, vol. 22, no. 2, 1975, pp. 215-225. https://doi.org/10.1145/321879.321884
- J.W. Harrington, "Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes," Ph.D. Thesis, California Institute of Technology, 2004.
- N. Delfosse and N.H. Nickerson, "Almost-linear time decoding algorithm for topological codes," Quantum, vol. 5, 2021.
- G. Duclos-Cianci and D. Poulin, "Fast decoders for topological quantum codes," Phys. Rev. Lett. vol. 104, 2010, article no. 050504.
- A.G. Fowler, "Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time," Quantum Info. Comput., vol. 15, 2015, pp. 145-158. https://doi.org/10.26421/QIC15.1-2-9
- O. Higgott, "PyMatching: A python package for decoding quantum codes with minimum-weight perfect matching," ACM Trans. Quantum Comput., vol. 3, no. 3, 2022, pp. 1-16. https://doi.org/10.1145/3505637
- O. Higgott et al., "Sparse blossom: Correcting a million errors per core second with minimum-weight matching," arXiv preprint, CoRR, 2023, arXiv: 2303.15933.
- Y. Yuan et al., "A modified MWPM decoding algorithm for quantum surface codes over depolarizing channels," arXiv preprint, CoRR, 2022, arXiv: 2202.11239. 2202
- N. Delfosse, "Hierarchical decoding to reduce hardware requirements for quantum computing," arXiv preprint, CoRR, 2020, arXiv: 2001.11427.
- H. Anwar et al., "Fast decoders for qudit topological codes," New J. Phys., vol. 16, no. 6, 2014.
- S. Bravyi et al., "Quantum self-correction in the 3d cubic code mode," Phys. Rev. Lett., vol. 111, no. 20, 2013.
- G. Duclos-cianci et al., "Fault-tolerant renormalization group decoder for abelian topological codes," arXiv preprint, CoRR, 2013, arXiv: 1304.6100.
- S. Varsamopoulos, "Neural network based decoders for the surface code," Ph.D. Thesis, Delft University of Technology, 2019.
- A.J. Ferris et al., "Tensor networks and quantum error correction," Phys. Rev. Lett., vol. 113, 2014, article no. 030501.
- A.J. Ferris and D. Poulin, "Branching MERA codes: A natural extension of classical and quantum polar codes," in Proc. IEEE Int. Symp. Inf. Theory, (Honolulu, HI, USA), June 2014, pp. 1081-1085.
- C.T. Chubb, "General tensor network decoding of 2D Pauli codes," arXiv preprint, CoRR, 2021, arXiv: 2101.04125.
- S. Varsamopoulos et al., "Decoding small surface codes with feedforward neural networks," Quantum Sci. Technol., vol. 3, 2017, article no. 015004.
- G. Torlai et al., "Neural decoder for topological codes," Phys. Rev. Lett., vol. 119, 2017, article no. 030501.
- S. Krastanov et al., "Deep neural network probabilistic decoder for stabilizer codes," Sci. Rep., vol. 7, 2017, article no. 11003.
- C. Chamberland et al., "Deep neural decoders for near term fault-tolerant experiments," Quantum Sci. Technol., vol. 3, no. 4, 2018, article no. 044002.
- P. Baireuther et al., "Neural network decoder for topological color codes with circuit level noise," New J. Phys., vol. 21, 2019, article no. 013003.
- Y.H. Liu et al., "Neural belief-propagation decoders for quantum error-correcting codes," Phys. Rev. Lett., vol. 122, 2019, article no. 200501.
- T. Wagner et al., "Symmetries for a high-level neural decoder on the toric code," Phys. Rev. A, vol. 102, 2020, article no. 042411.
- X. Ni, "Neural network decoders for large-distance 2D toric codes," Quantum, vol. 4, 2020.
- S. Varona et al., "Determination of the semion code threshold using neural decoders," Phys. Rev. A, vol. 102, 2020, article no. 032411.
- S. Gicev et al., "A scalable and fast articial neural network syndrome decoder for surface codes," arXiv preprint, CoRR, 2021, arXiv: 2110.05854.
- H.P. Nautrup et al., "Optimizing quantum error correction codes with reinforcement learning," Quantum, vol. 3, 2019.
- T. Fosel et al., "Reinforcement learning with neural networks for quantum feedback," Phys. Rev. X, vol. 8, 2018, article no. 031084.
- P. Andreasson et al., "Quantum error correction for the toric code using deep reinforcement learning," Quantum, vol. 3, 2019.
- D. Fitzek, "Error correction for depolarising noise on a quantum system using deep RL," Master's Thesis at Chalmers University of Technology, 2019.
- D. Fitzek et al., "Deep Q-learning decoder for depolarizing noise on the toric code," Phys. Rev. Research, vol. 2, 2020, article no. 023230.
- L. Domingo Colomer et al., "Reinforcement learning for optimal error correction of toric codes," Phys. Lett. A, vol. 384, 2020, article no. 126353.
- R. Sweke et al., "Reinforcement learning decoders for fault-tolerant quantum computation," arXiv preprint, CoRR, 2018, arXiv: 1810.07207.
- T. Hugo et al., "A NEAT quantum error decoder," SciPost Phys., vol. 11, 2021.
- D. Horgan et al., "Distributed prioritized experience replay," arXiv preprint, CoRR, 2018, arXiv: 1803.00933.
- K. He et al., "Deep residual learning for image recognition," in Proc. IEEE CVPR 2016, (Las Vegas, NV, USA), June 2016, pp. 770-778.
- R.S. Sutton et al., "Policy gradient methods for reinforcement learning with function approximation," in Advances in Neural Information Processing Systems, MIT Press, Cambridge, Massachusetts, USA, 2000, pp. 1057-1063.
- J.R. Wootton et al., "High threshold error correction for the surface code," Phys. Rev. Lett., vol. 109, 2012, article no. 160503.
- A. Hutter et al., "Efficient markov chain monte carlo algorithm for the surface code," Phys. Rev. A, vol. 89, 2014, article no. 022326.
- F. Battistel et al., "Real-time decoding for fault-tolerant quantum computing: Progress, challenges and outlook," arXiv preprint, CoRR, 2023, arXiv: 2303.00054.
- A. Holmes et al., "NISQ+: Boosting quantum computing power by approximating quantum error correction," in Proc. ACM/IEEE ISCA 2020, (Valencia, Spain), May 2020, pp. 556-569.
- Y. Ueno et al., "QECOOL: On-line quantum error correction with a superconducting decoder for surface code," in Proc. ACM/IEEE DAC 2021, (San Francisco, CA, USA), Dec. 2021, pp. 451-456.
- P. Das et al., "LILLIPUT: A lightweight low-latency lookup-table based decoder for near-term quantum error correction," in Proc. ASPLOS 2022, (Lausanne, Switzerland), Feb. 2021, pp. 541-553.
- R.W.J. Overwater et al., "Neural-network decoders for quantum error correction using surface codes: A space exploration of the hardware cost-performance tradeoffs," IEEE Trans. Quantum Engineering, vol. 3, 2022, pp. 1-19. https://doi.org/10.1109/TQE.2022.3174017
- P. Das et al., "AFS: Accurate, fast, and scalable error-decoding for fault-tolerant quantum computers," in Proc. IEEE HPCA 2022, (Seoul, Republic of Korea), Apr. 2022, pp. 259-273.
- Y. Ueno et al., "QULATIS: A quantum error correction methodology toward lattice surgery," in Proc. IEEE HPCA 2022, (Seoul, Republic of Korea), Apr. 2022, pp. 274-287.
- Y. Ueno et al., "NEO-QEC: Neural network enhanced online superconducting decoder for surface codes," arXiv preprint, CoRR, 2022, arXiv: 2208.05758.
- G.S. Ravi et al., "Better than worst-case decoding for quantum error correction," in Proc. ASPLOS 2023, vol. 2, (Vancouver, Canada), Mar. 2023, pp. 88-102.
- N. Liyanage et al., "Scalable quantum error correction for surface codes using FPGA," arXiv preprint, CoRR, 2023, arXiv: 2301.08419.
- L. Skoric et al., "Parallel window decoding enables scalable fault tolerant quantum computation," arXiv preprint, CoRR, 2023, arXiv: 2209.08552.
- T. Xinyu et al., "Scalable surface code decoders with parallelization in time," arXiv preprint, CoRR, 2022, arXiv: 2209.09219.