DOI QR코드

DOI QR Code

Quick and easy game bot detection based on action time interval estimation

  • 투고 : 2022.03.02
  • 심사 : 2022.08.15
  • 발행 : 2023.08.10

초록

Game bots are illegal programs that facilitate account growth and goods acquisition through continuous and automatic play. Early detection is required to minimize the damage caused by evolving game bots. In this study, we propose a game bot detection method based on action time intervals (ATIs). We observe the actions of the bots in a game and identify the most frequently occurring actions. We extract the frequency, ATI average, and ATI standard deviation for each identified action, which is to used as machine learning features. Furthermore, we measure the performance using actual logs of the Aion game to verify the validity of the proposed method. The accuracy and precision of the proposed method are 97% and 100%, respectively. Results show that the game bots can be detected early because the proposed method performs well using only data from a single day, which shows similar performance with those proposed in a previous study using the same dataset. The detection performance of the model is maintained even after 2 months of training without any revision process.

키워드

과제정보

This study is supported by Korea University Grant.

참고문헌

  1. D. L. King, P. H. Delfabbro, J. Billieux, and M. N. Potenza, Problematic online gaming and the covid-19 pandemic, J. Behav. Addict. 9 (2020), 184-186. https://doi.org/10.1556/2006.2020.00016
  2. M. A. Lopez-Cabarcos, D. Ribeiro-Soriano, and J. PineiroChousa, All that glitters is not gold. The rise of gaming in the covid-19 pandemic, J. Innov. Knowl. 5 (2020), no. 4, 289-296. https://doi.org/10.1016/j.jik.2020.10.004
  3. Newzoo, Newzoo global games market report 2021, Tech. report. newzoo, 2021. https://newzoo.com/insights/trendreports/newzoo-global-games-market-report-2021-free-version. [Accessed 6 July 2022].
  4. J. Clement: Data volume of global consumer internet traffic from 2017 to 2022, by subsegment (in exabytes per month). Tech. report. Statista, 2018. [Accessed 6 July 2022]. https://www. statista.com/statistics/267194/forecast-of-internet-traffic-bysubsegment/
  5. S. Venkatesha, K. R. Reddy, and B. R. Chandavarkar, Social engineering attacks during the COVI-19 pandemic, SN Comput. Sci. 2 (2021), no. 2, 1-9. https://doi.org/10.1007/s42979-020-00382-x
  6. C. D'Anastasio, Bot mafias have wreaked havoc in world of warcraft classic, 2020. https://www.wired.com/story/world-ofwarcraft-classic-russian-bots/. [Accessed 6 July 2022].
  7. A. Fujita, H. Itsuki, and H. Matsubara, Detecting real money traders in mmorpg by using trading network, (Seventh Artificial Intelligence and Interactive Digital Entertainment Conference, Stanford, CA, USA), 2011, pp. 26-31.
  8. D. Bunker, Who do you trust? The digital destruction of shared situational awareness and the covid-19 infodemic, Int. J. Inform. Manag. 55 (2020), 102201. https://doi.org/10.1016/j.ijinfomgt.2020.102201
  9. R. Thawonmas, Y. Kashifuji, and K.-T. Chen, Detection of MMORPG bots based on behavior analysis, (Proceedings of the International Conference on Advances in Computer Entertainment Technology, Yokohama, Japan), 2008, pp. 91-94.
  10. K. T. Chen, A. Liao, H. K. K. Pao, and H. H. Chu, Game bot detection based on avatar trajectory, (International Conference on Entertainment Computing, Pittsburgh, PA, USA), 2008, pp. 94-105.
  11. S. Mitterhofer, C. Kruegel, E. Kirda, and C. Platzer, Server-side bot detection in massively multiplayer online games, IEEE Secur. Privacy 7 (2009), no. 3, 29-36.
  12. M. van Kesteren, J. Langevoort, and F. Grootjen, A step in the right direction: Botdetection in mmorpgs using movement analysis, (Proc. of the 21st Belgian-Dutch Conference on Artificial Intelligence, Eindhoven, Netherlands), 2009, pp. 129-136.
  13. K.-T. Chen and L.-W. Hong, User identification based on gameplay activity patterns, (Proceedings of the 6th ACM SIGCOMM Workshop on Network and System Support for Games, Melbourne, Australia), 2007, pp. 7-12.
  14. J. Lee, J. Lim, W. Cho, and H. K. Kim, I know what the BOTs did yesterday: Full action sequence analysis using naive Bayesian algorithm, (12th Annual Workshop on Network and Systems Support for Games, Denver, CO, USA), 2013, pp. 1-2.
  15. E. Lee, J. Woo, H. Kim, A. Mohaisen, and H. K. Kim, You are a game bot!: Uncovering game bots in mmorpgs via self-similarity in the wild, (NDSS, San Diego, CA, USA), 2016, pp. 1-15.
  16. M. A. Ahmad, B. Keegan, J. Srivastava, D. Williams, and N. Contractor, Mining for gold farmers: Automatic detection of deviant players in MMOGs, (International Conference on Computational Science and Engineering, Vancouver), 2009, pp. 340-345.
  17. A. R. Kang, J. Woo, J. Park, and H. K. Kim, Online game bot detection based on party-play log analysis, Comput. Math. Appl. 65 (2013), no. 9, 1384-1395. https://doi.org/10.1016/j.camwa.2012.01.034
  18. Y. Chung, C. Y. Park, N. R. Kim, H. Cho, T. Yoon, H. Lee, and J. H. Lee, Game bot detection approach based on behavior analysis and consideration of various play styles, ETRI J. 35 (2013), no. 6, 1058-1067. https://doi.org/10.4218/etrij.13.2013.0049
  19. B. Keegan, M. A. Ahmed, D. Williams, J. Srivastava, and N. Contractor, Dark gold: Statistical properties of clandestine networks in massively multiplayer online games, (IEEE Second International Conference on Social Computing, Minneapolis, MN, USA) 2010, pp. 201-208.
  20. H. Kwon, A. Mohaisen, J. Woo, Y. Kim, E. Lee, and H. K. Kim, Crime scene reconstruction: Online gold farming network analysis, IEEE Trans. Inform. Forensics Secur. 12 (2016), no. 3, 544-556.
  21. J. Woo, A. R. Kang, and H. K. Kim, The contagion of malicious behaviors in online games, SIGACM SIGCOMM Comput. Commun. Rev. 43 (2013), no. 4, 543-544. https://doi.org/10.1145/2534169.2491712
  22. A. R. Kang, H. K. Kim, and J. Woo, Chatting pattern based game bot detection: Do they talk like us? KSII Trans. Int. Inform. Syst. 6 (2012), no. 11, 2866-2879.
  23. J.-H. Lee, S. W. Kang, and H. K. Kim, Detecting malicious behaviors in MMORPG by applying motivation theory, J. Korea Game Soc. 15 (2015), no. 4, 69-78.
  24. A. R. Kang, S. H. Jeong, A. Mohaisen, and H. K. Kim, Multimodal game bot detection using user behavioral characteristics, SpringerPlus 5 (2016), no. 1, 523.
  25. J. Tao, J. Xu, L. Gong, Y. Li, C. Fan, and Z. Zhao, NGUARD: A game bot detection framework for NetEase MMORPGs, (Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK), 2018, pp. 811-820.
  26. J. Xu, Y. Luo, J. Tao, C. Fan, Z. Zhao, and J. Lu, Nguard+: An attention-based game bot detection framework via player behavior sequences, ACM Trans. Knowl. Discov. Data 14 (2020), no. 6, 1-24.
  27. W. Li, X. Chu, Y. Su, D. Yao, S. Zhao, R. Wu, S. Zhang, J. Tao, H. Deng, and J. Bi, FingFormer: Contrastive graph-based finger operation transformer for unsupervised mobile game bot detection, (Proceedings of the ACM Web Conference, Lyon, France), 2022, pp. 3367-3375. https://doi.org/10.1145/3485447.3512272
  28. NCSOFT, AION: The Tower of Eternity, NCSOFT, Seoul, Republic of Korea, 2008. Game [PC].