Acknowledgement
This work was supported by the 2021 Hongik University Research Fund.
References
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Proc. Syst. 25 (2012), 1097-1105.
- K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, 2014. https://doi.org/10.48550/arXiv.1409.1556
- K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, arXiv preprint, 2015. https://doi.org/10.48550/arXiv.1512.03385
- S. Han, J. Pool, J. Tran, and W. J. Dally, Learning Both Weights, and Connections for Efficient Neural Networks, In Advances in Neural Information Processing Systems, NIPS, 2015, 1135-1143.
- S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri, J. Tran, and B. Catanzaro, DSD: Densesparse-dense training for deep neural networks, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1607.04381
- G. Li and G. Xu, Providing clear pruning threshold: A novel CNN pruning method via L0 regularisation, IET Image Process. 15 (2020), no. 2.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, arXiv preprint, 2014. https://doi.org/10.48550/arXiv.1409.4842
- X. Zhang, X. Zhou, M. Lin, and J. Sun, ShuffleNet: An extremely efficient convolutional neural network for Mobile devices, (Conference on Computer Vision, and Pattern Recognition, Salt Lake City, UT, USA), 2018, pp. 6848-6856.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, MobileNetV2: Inverted residuals, and linear bottlenecks, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1801.04381
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, MobileNets: Efficient convolutional neural networks for Mobile vision applications, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1704.04861
- J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for simplicity: The all convolutional net, arXiv preprint, 2015. https://doi.org/10.48550/arXiv.1412.6806
- F. Chollet, Xception: Deep learning with depthwise separable convolutions, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1610.02357
- Y. Zhou, Y. Liu, G. Han, and Y. Fu, Face recognition based on the improved MobileNet, (IEEE Symposium Series on Computational Intelligence, Xiamen, China), 2019, pp. 2776-2781. https://doi.org/10.1109/SSCI44817.2019.9003100
- C. Bi, J. Wang, Y. Duan, B. Fu, J. R. Kang, and Y. Shi, MobileNet based apple leaf diseases identification, Mobile Netw. Appl. 27 (2022), 172-180. https://doi.org/10.1007/s11036-020-01640-1
- J. Chen, D. Zhang, and M. Suzauddola, Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning, IET Image Process. 15 (2021), no. 1, 23-26.
- A. Wibowo, C. A. Hartanto, and P. W. Wirawan, Android skin cancer detection and classification based on MobileNet v2 model, Int. J. Adv. Intell. Inf. 6 (2020), no. 2, 135-148.
- V. S. K. Tangudu, J. Kakarla, and I. B. Venkateswarlu, COVID19 detection from chest x-ray using MobileNet and residual separable convolution block, Soft. Comput. 26 (2022), 2197-2208. https://doi.org/10.1007/s00500-021-06579-3
- M. H. Firmansyah, S.-J. Koh, and W. K. Dewanto, Light-weight MobileNet for fast detection of COVID-19, Jurnal Teknologi Informasi Dan Terapan, J-TIT 8 (2021), no. 1, 2580-2291.
- A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, and Q. V. Le, Searching for MobileNetV3, arXiv preprint, 2019. https://doi.org/10.48550/arXiv.1905.02244
- J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, Squeeze-andexcitation networks, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1709.01507
- S. Woo, J. Park, J. Lee, and I.S. Kweon, CBAM: Convolutional block attention module, (Proceedings of the European Conference on Computer Vision, Munich, Germany), 2018, pp. 3-19.
- C.-H. Tu, J.-H. Lee, Y.-M. Chan, and C.-S. Chen, Pruning depthwise separable convolutions for MobileNet compression, (Proc. International Joint Conference on Neural Netw, Glasgow, UK), 2020, pp. 1-8.
- M. Ayi and M. El-Sharkawy, RMNv2: Reduced Mobilenet V2 for CIFAR10, (10th Annual Computing and Communication Workshop and Conference, Las Vegas, NV, USA), 2020. https://doi.org/10.1109/CCWC47524.2020.9031131
- P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, HetConv: Heterogeneous kernel-based convolutions for deep CNNs, arXiv preprint, 2019. https://doi.org/10.48550/arXiv.1903.04120
- V.-T. Hoang and K.-H. Jo, PydMobileNet: Pyramid Depthwise separable convolution networks for image classification, (IEEE 28th International Symposium on Industrial Electronics, Vancouver, Canada), 2019, pp. 1430-1434. https://doi.org/10.1109/ISIE.2019.8781130
- N. A. Mohamed, M. A. Zulkifley, and S. R. Abdani, Spatial pyramid pooling with Atrous convolutional for MobileNet, (IEEE student Conference on Research and Development, Batu Pahat, Malaysia), 2020, pp. 333-336. https://doi.org/10.1109/SCOReD50371.2020.9250928
- P. S. P. Kavyashree and M. El-Sharkawy, Compressed MobileNet V3:A light weight variant for resource-constrained platforms, (IEEE 11th Annual Computing and Communication Workshop and Conference, NV, USA), 2021. https://doi.org/10.1109/CCWC51732.2021.9376113
- S. Bouguezzi, H. Faiedh, and C. Souani, Slim MobileNet: An enhanced deep convolutional neural network, (18th International Multi-Conference on Systems, Signals & Devices, Monastir, Tunisia), 2021. https://doi.org/10.1109/SSD52085.2021.9429519
- H.-Y. Chen and C.-Y. Su, An enhanced hybrid MobileNet, (International Conference on Awareness Science, and Technology, Fukuoka, Japan), 2018, pp. 308-312.
- D. Sinha and M. El-Sharkawy, Ultra-thin MobileNet, (IEEE Aannual Computing, and Communication Workshop, and Conference, Las Vegas, NV, USA), 2020, pp. 234-240.