DOI QR코드

DOI QR Code

IoT-based systemic lupus erythematosus prediction model using hybrid genetic algorithm integrated with ANN

  • Edison Prabhu K (Department of Electrical and Electronics Engineering, Nehru Institute of Engineering and Technology) ;
  • Surendran D (Department of Information Technology, Karpagam College of Engineering)
  • Received : 2022.08.24
  • Accepted : 2023.01.25
  • Published : 2023.08.10

Abstract

Internet of things (IoT) is commonly employed to detect different kinds of diseases in the health sector. Systemic lupus erythematosus (SLE) is an autoimmune illness that occurs when the body's immune system attacks its own connective tissues and organs. Because of the complicated interconnections between illness trigger exposure levels across time, humans have trouble predicting SLE symptom severity levels. An effective automated machine learning model that intakes IoT data was created to forecast SLE symptoms to solve this issue. IoT has several advantages in the healthcare industry, including interoperability, information exchange, machine-to-machine networking, and data transmission. An SLE symptom-predicting machine learning model was designed by integrating the hybrid marine predator algorithm and atom search optimization with an artificial neural network. The network is trained by the Gene Expression Omnibus dataset as input, and the patients' data are used as input to predict symptoms. The experimental results demonstrate that the proposed model's accuracy is higher than state-of-the-art prediction models at approximately 99.70%.

Keywords

References

  1. A. Limaye and T. Adegbija, A benchmark suite for the internet of medical things, IEEE Internet Things J. 5 (2018), no. 5, 4212-4222. https://doi.org/10.1109/JIOT.2018.2849859
  2. G. Kalyani and S. Chaudhari, An efficient approach for enhancing security in internet of things using the optimum authentication key, Int. J. Comput. Applic. 42 (2019), no. 3, 306-314.
  3. R. K. Pathinarupothi, P. Durga, and E. S. Rangan, IoT-based smart edge for global health: Remote monitoring with severity detection and alert transmission, IEEE Internet Things J. 6 (2019), no. 2, 2449-2462. https://doi.org/10.1109/JIOT.2018.2870068
  4. G. Yang, L. Xie, M. Mantysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-Walter, Q. Chen, and L. R. Zheng, A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box, IEEE Trans. Indust. Informatics. 10 (2014), no. 4, 2180-2191. https://doi.org/10.1109/TII.2014.2307795
  5. Y. Huang, Q. Zhao, Q. Zhou, and W. Jiang, Air quality forecast monitoring and its impact on brain health based on big data and the Internet of things, IEEE Access. 6 (2018), 78678-78688. https://doi.org/10.1109/ACCESS.2018.2885142
  6. U. Satija, B. Ramkumar, and M. S. Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J. 4 (2017), no. 3, 815-823. https://doi.org/10.1109/JIOT.2017.2670022
  7. C. F. Pasluosta et al., An emerging era in the management of Parkinson's disease: Wearable technologies and the internet of things, IEEE J. Biomed. Health Informat. 19 (2015), no. 6, 1873-1881. https://doi.org/10.1109/JBHI.2015.2461555
  8. S. Yang, B. Gao, L. Jiang, J. Jin, Z. Gao, X. Ma, and W. L. Woo, IoT structured long-term wearable social sensing for mental wellbeing, IEEE Int. Things J. 6 (2019), no. 2, 3652-3662. https://doi.org/10.1109/JIOT.2018.2889966
  9. M. Al Disi, H. Djelouat, C. Kotroni, E. Politis, A. Amira, F. Bensaali, G. Dimitrakopoulos, and G. Alinier, ECG signal reconstruction on the IoT-gateway and efficacy of compressive sensing under real-time constraints, IEEE Access. 6 (2018), 69130-69140. https://doi.org/10.1109/ACCESS.2018.2877679
  10. M. Koulali et al., Industrial internet of things-based prognostic health management: A mean-field stochastic game approach, IEEE Access. 6 (2018), 54388-54395. https://doi.org/10.1109/ACCESS.2018.2871859
  11. T. C. Arcadius, B. Gao, G. Y. Tian, and Y. Yan, Structural health monitoring framework based on internet of things: A survey, IEEE Internet Things J. 4 (2017), no. 3, 619-635. https://doi.org/10.1109/JIOT.2017.2664072
  12. J. Rodrigues et al., Enabling technologies for the internet of health things, IEEE Access. 6 (2018), 13129-13141. https://doi.org/10.1109/ACCESS.2017.2789329
  13. P. Verma and S. K. Sood, Fog-assisted IoT-enabled patient health monitoring in smart homes, IEEE Internet Things J. 5 (2018), no. 3, 1789-1796. https://doi.org/10.1109/JIOT.2018.2803201
  14. M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo, Design of secure user authenticated key management protocol for generic IoT networks, IEEE Int. Things J. 5 (2018), no. 1, 269-282. https://doi.org/10.1109/JIOT.2017.2780232
  15. A. Kamilaris and A. Pitsillides, Mobile phone computing and the internet of things: A Survey, IEEE Internet Things J. 3 (2019), no. 6, 885-898.
  16. H. Zhang, J. Li, B. Wen, Y. Xun, and J. Liu, Connecting intelligent things in smart hospitals using NB-IoT, IEEE Internet Things J. 5 (2018), no. 3, 1550-1560.
  17. T. Pan and K. Fang, An effective information support system for medical management: Indicator-based intelligence system, Int. J. Comput. Applic. 32 (2015), 119-124.
  18. Y. J. Tseng and Y. L. Shih, Developing epidemic forecasting models to assist disease surveillance for influenza using electronic health records, Int. J. Comput. Applic. 42 (2019), no. 6, 616-621.
  19. X. Wang, L. F. Li, W. Shi, and Z. Hong, Analysis on the payment of urban medical insurance for community outpatients of two groups, Int. J. Comput. Applic. 1 (2013), no. 4, 166-169.
  20. Lupus Foundation of America, National Resource Center on the Lupus, 2018. available at https://www.lupus.org/resources
  21. S. K. Dhar, S. S. Bhunia, and N. Mukherjee, Interference-aware scheduling of sensors in IoT-enabled health-care monitoring system, Proc. 4th Int. Conf. Emerg. Applic. Informat. Technol., Kolkata, India. (2014), 152-157.
  22. Z. Zhang, J. Brazil, M. Ozkaynak, and K. Desanto, Evaluative research of technologies for prehospital communication and coordination: A systematic review, J. Medic. Sys. 44 (2020), no. 5, 100. https://doi.org/10.1007/s10916-020-01556-z
  23. R. Vaishya, M. Javaid, I. H. Khan, and A. Haleem, Artificial intelligence (AI) applications for COVID-19 pandemic, Diabet. Metabol. Syndr. 14 (2020), no. 4, 337-339. https://doi.org/10.1016/j.dsx.2020.04.012
  24. A. S. Adly and M. S. Adly, Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: Scoping review, J. Medic. Internet Res. 22 (2020), no. 8.
  25. T. T. Allen and A. Arora, Conceptualizing artificial intelligence as a digital healthcare innovation: An introductory review, Medic. Dev. Auckland. 13 (2020), 223-230.
  26. W. Zhao, L. Wang, and Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl. Based Sys. 163 (2018), 283-304. https://doi.org/10.1016/j.knosys.2018.08.030
  27. M. A. Syed, K. Sankar, T. Benil, and Y. N. Rao, A hybrid machine-learning technique for the early prediction of lung nodules from medical images using a learning-based neural network classifier, Concurr. Computat. Pract. Exper. 35 (2022), e7488. https://doi.org/10.1002/cpe.7488
  28. E. L. Hazen, B. Abrahms, S. Brodie, G. Carroll, M. G. Jacox, M. S. Savoca, K. L. Scales, W. J. Sydeman, and S. J. Bograd, Marine top predators as climate and ecosystem sentinels, Front. Ecol. Environ. 17 (2019), no. 10, 565-574. https://doi.org/10.1002/fee.21345
  29. M. Asna, H. Shareef, M. A. Muhammad, L. Ismail, and A. Prasanthi, A multi-objective quantum atom search optimization algorithm for electric vehicle charging station planning, Int. J. Energy Res. 16 (2022), no. 12, 17308-17331. https://doi.org/10.1002/er.8399