DOI QR코드

DOI QR Code

드론 정밀 측위 기술 동향

A Trend Survey on Precision Positioning Technology for Drones

  • 이정호 (도시.공간ICT연구실) ;
  • 전주일 (도시.공간ICT연구실) ;
  • 한경수 (도시.공간ICT연구실) ;
  • 조영수 (도시.공간ICT연구실) ;
  • 임채덕 (에어모빌리티연구본부)
  • J.H. Lee ;
  • J. Jeon ;
  • K. Han ;
  • Y. Cho ;
  • C.D. Lim
  • 발행 : 2023.06.01

초록

Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

키워드

과제정보

이 논문은 과학기술정보통신부·경찰청이 공동 지원한 '폴리스랩 2.0 사업'의 지원을 받아 수행된 연구결과임[220122M09, 국민·경찰 참여기반 치안현장용 정밀측위 지원 플랫폼 구축].

참고문헌

  1. V.L. Stouffer et al., "Reliable, secure, and scalable communications, navigation, and surveilance(CNS) options for urban air mobility(UAM)," NASA Technical Report, Aug. 2020.
  2. http://rtk.mbc.co.kr/mbcrtk/perfomance.jsp
  3. 한국인터넷진흥원, "위치정보 산업 동향 보고서," 월간보고서, Sept. 2022.
  4. A. Zaarane et al., "Distance measurement system for autonomous vehicles using stereo camera," Array. vol. 5, 2022, article no. 100016.
  5. X. Sun et al., "Distance measurement system based on binocular stereo vision," IOP Conf. Series: Environ. Earth Sci., vol. 252, no. 5, 2019.
  6. T. Schops et al., "Bad SLAM: Bundle adjusted direct RGB-D SLAM," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., (Long Beach, LA, USA), June 2019, pp. 134-144.
  7. B. Yang and J. Li, "A hierarchical approach for refining point cloud quality of a low cost UAV LiDAR system in the urban environment," ISPRS J. Photogramm. Remote Sens., vol. 183, 2022, pp. 403-421. https://doi.org/10.1016/j.isprsjprs.2021.11.022
  8. 3GPP TR 37.777 v15.0.0, Study on Enhanced LTE Support for Aerial Vehicles(Release 15), 2017. 12.
  9. 3GPP TR 22.825 v16.0.0, Remote Identification of Unmanned Aerial Systems, 2018. 9.
  10. 3GPP TR 23.754 v17.1.0, Study on Supporting Unmanned Aerial Systems(UAS) Connectivity, Identification and Tracking(Release 17), 2021. 3.
  11. 3GPP TR 23.755 v17.0.0, Study on Application Layer Support for Unmanned Aerial Systems(UAS), 2021. 4.
  12. 3GPP TS 22.125 v17.1.0, Unmanned Aerial System (UAS) Support in 3GPP, 2019. 12.
  13. 3GPP TS 22.261 v18.1.0, Service Requirements for the 5G System, 2019. 12.
  14. K. Shamaei and Z.M. Kassas, "Sub-meter accurate UAV navigation and cycle slip detection with LTE carrier phase measurements," in Proc. ION GNSS+ 2019, (Miami, FL, USA), Sept. 2019, pp. 2469-2479.
  15. A.A. Abdallah and Z.M. Kassas, "UAV navigation with 5G carrier phase measurements," in Proc. ION GNSS+ 2021, (St. Louis, MO, USA), Sept. 2021, pp. 3294-3306.
  16. J.A. Lopez-Pastor et al., "Wi-Fi RTT-based active monopulse RADAR for single access point localization," IEEE Access, vol. 9, 2021, pp. 34755-34766. https://doi.org/10.1109/ACCESS.2021.3062085
  17. G. Ariante, S. Ponte, and G. Del Core, "Bluetooth low energy based technology for small UAS indoor positioning," in Proc. IEEE MetroAeroSpace, (Pisa, Italy), June 2022, pp. 113-118.
  18. S. Lee et al., "Drone positioning system using UWB sensing and out-of-band control," IEEE Sens. J., vol. 6, 2021, pp. 5329-5343. https://doi.org/10.1109/JSEN.2021.3127233
  19. S. Huang et al., "Research on UAV flight performance test method based on dual antenna GPS/INS integrated system," in Proc. IEEE ICCIS, (Singapore, Singapore), Dec. 2018, pp. 106-116.
  20. B. Nenchoo and S. Tantrairatn, "Real-time 3D UAV pose estimation by visualization," in Proc. IAAI 2020, (Chumphon, Thailand), vol. 39, no. 1, 2020, pp. 1-5.
  21. Z. Li and Y. Zhang, "Constrained ESKF for UAV positioning in indoor corridor environment based on IMU and WiFi," Sensors, vol. 22, no. 1, 2022, pp. 1-18. https://doi.org/10.1109/JSEN.2021.3136033
  22. T. Wu et al., "UWB-based multi-source fusion positioning for cooperative UAVs in complex scene," in Proc. IEEE IPIN, (Beijing, China), Sept. 2022, pp. 1-8.