DOI QR코드

DOI QR Code

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim (Electronics and Telecommunications Research Institute) ;
  • Sang-Rok Moon (Electronics and Telecommunications Research Institute) ;
  • Minkyu Sung (Electronics and Telecommunications Research Institute) ;
  • Joon Ki Lee (Electronics and Telecommunications Research Institute) ;
  • Seung-Hyun Cho (Electronics and Telecommunications Research Institute)
  • Received : 2022.01.21
  • Accepted : 2022.08.07
  • Published : 2023.04.20

Abstract

We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Keywords

Acknowledgement

This research was supported by Electronics and Telecommunications Research Institute, a South Korean grant funded by the Korean government [22ZH1100, Study on 3D communication technology for hyper-connectivity].

References

  1. D. Mirzoev, Wireless transmission of video for biomechanical analysis, arXive preprint, 2014. https://doi.org/10.48550/arXiv.1404.2343
  2. M. C. Batistatos, G. V. Tsoulos, and G. E. Athanasiadou, Mobile telemedicine for moving vehicle scenarios: wireless technology options and challenges, J. Netw. Comput. 35 (2012), no. 2, 1140-1150. https://doi.org/10.1016/j.jnca.2012.01.003
  3. T. Toma, S. Suzuki, S. Suzuki, H. Tokura, Y. Inaba, and T. Y. Ogi, Koike evaluation of 4K ultra definition video for telemedi-cine-possibility of teledermatology applications, Jpn. J. Telemed. Telecare. 9 (2013), 66-73.
  4. M. Mozaffari, W. Saad, M. Bennis, Y. H. Nam, and M. Debbah, A tutorial on UAVs for wireless networks: applications, challenges, and open problems, IEEE Commun. Surveys Tutorials 21 (2019), no. 3, 2334-2360. https://doi.org/10.1109/COMST.2019.2902862
  5. T. Nagatsuma, G. Ducournau, and C. C. Renaud, Advances in terahertz communications accelerated by photonics, Nature Photon. 10 (2016), 371-379.
  6. I. Mehdi, J. V. Siles, C. Lee, and E. Schlecht, THz diode technology: status, prospects, and applications, Proc. IEEE 105 (2017), no. 6, 990-1007. https://doi.org/10.1109/JPROC.2017.2650235
  7. A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers, J. Infrared Milli. Terahz. Waves. 36 (2015), 269-277. https://doi.org/10.1007/s10762-014-0125-5
  8. H. Ito and T. Ishibashi, Photonic terahertz-wave generation using slot-antenna-integrated uni-traveling-carrier photodiodes, IEEE J. Sel. Topics Quantum Electron. 23 (2017), no. 4, 1-7.
  9. I. Morohashi, Y. Irimajiri, M. Kumagai, A. Kawakami, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, Terahertz source with broad frequency tunability up to 3.8 THz using MZ-FCG for frequency reference in phase-locking of THz source devices, (Proc. IEEE Int. Topical Meeting Microw. Photon., Long Beach, CA, USA), 2016, pp. 126-128.
  10. A. Hirata, T. Kosugi, H. Takahashi, J. Takeuchi, K. Murata, N. Kukutsu, Y. Kado, S. Okabe, T. Ikeda, F. Suginosita, K. Shogen, H. Nishikawa, A. Irino, T. Nakayama, and N. Sudo, 5.8-km 10-Gbps data transmission over a 120-GHzband wireless link, (Proc. IEEE Int. Conf. Wireless Inf. Technol. Syst., Honolulu, HI, USA), 2010, pp. 1-4.
  11. S. Diebold, K. Nishio, Y. Nishida, J. Y. Kim, K. Tsuruda, T. Mukai, M. Fujita, and T. Nagatsuma, High-speed error-free wire-less data transmission using a terahertz resonant tunnelling diode transmitter and receiver, Electron. Lett. 52 (2016), 1999-2001. https://doi.org/10.1049/el.2016.2941
  12. T. Nagatsuma, K. Oogimoto, Y. Inubushi, and J. Hirokawa, Practical considerations of terahertz communications for short distance applications, Nano Commun. Netw. 10 (2016), 1-12. https://doi.org/10.1016/j.nancom.2016.07.005
  13. Q. Wu, C. Lin, B. Lu, L. Miao, X. Hao, Z. Wang, Y. Jiang, W. Lei, X. Den, H. Chen, J. Yao, and J. Zhang, A 21 km 5 Gbps real time wireless communication system at 0.14 THzjournal, (Proc. IEEE 42nd Int. Conf. Infr., Millim., Terahertz Waves, Cancun, Mexico), 2017, pp. 1-2.
  14. G. Ducournau, F. Pavanello, A. Beck, L. Tohme, S. Blin, P. Nouvel, E. Peytavit, M. Zaknoune, P. Szriftgiser, and J. F. Lampin, High-definition television transmission at 600 GHz combining THz photonics hotspot and high-sensitivity heterodyne receiver, Electron. Lett. 50 (2014), 413-415. https://doi.org/10.1049/el.2013.3796
  15. K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatiy, Live streaming of uncompressed HD and 4K videos using terahertz wireless links, IEEE Access. 6 (2018), 58030-58042. https://doi.org/10.1109/ACCESS.2018.2873986
  16. E. Kim, S. R. Moon, M. Sung, H. H. Lee, J. K. Lee, and S. H. Cho, Cost-effective photonics-based THz wireless delivery system using a directly modulated DFB-LD, Optics Communications. 492 (2021), 126969.
  17. J. Cartledge and G. S. Burley, The effect of laser chirping on lightwave system performance, J. Lightwave Technol. 7 (1989), 568-573. https://doi.org/10.1109/50.16895
  18. J. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s, J. Lightwave Technol. 20 (2002), 218-228. https://doi.org/10.1109/50.983235
  19. W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, Frequency detuning effects in a loop-back WDM-PON employing gain-saturated RSOAs, IEEE Photonics Technology Letters. 18 (2006), no. 13, 1436-1438. https://doi.org/10.1109/LPT.2006.877229
  20. S. Cho, S. S. Lee, and D. W. Shin, Impact of wavelength detuning on upstream transmission in a loop-back WDM-PON based on reflective-SOA, Optics Communications. 284 (2011), no. 7, 1951-1954. https://doi.org/10.1016/j.optcom.2010.11.062
  21. ST 2081-10:2015 - SMPTE Standard, 2160-Line and 1080-Line Source Image and Ancillary Data Mapping for Single-Link 6G-SDI, ST 2081-10:2015. 1-22.