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Abstract

ARIA is a block cipher proposed by Kwon et al. at ICISC 2003 that is widely

used as the national standard block cipher in the Republic of Korea. Herein,

we identify some flaws in the quantum rebound attack on seven-round ARIA-

DM proposed by Dou et al. and reveal that the limit of this attack is up to five

rounds. Our revised attack applies to not only ARIA-DM but also ARIA-MMO

and ARIA-MP among the PGV models, and it is valid for all ARIA key lengths.

Furthermore, we present dedicated quantum rebound attacks on seven-round

ARIA-Hirose and ARIA-MJH for the first time. These attacks are only valid

for the 256-bit key length of ARIA because they are constructed using the

degrees of freedom in the key schedule. All our attacks are faster than the

generic quantum attack in the cost metric of the time–space tradeoff.
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1 | INTRODUCTION

ARIA [1, 2] is an iterative substitution permutation net-
work (SPN) block cipher similar to AES [3] that supports
a 128-bit block size and 128-, 192-, and 256-bit key
lengths. Depending on the key lengths, it uses 12, 14, or
16 rounds. ARIA was presented by Kwon et al. at ICISC
2003 and was standardized by the Korean Agency for
Technology and Standards. ARIA is described by RFC
5794 [4] and has been supported by the Transport Layer
Security protocol since 2011 [5]. Since its development,
the security of ARIA has been scrutinized by several
cryptographers, and its full-round security has been brea-
ched only by the use of the biclique attack, which is only
slightly faster than brute force attacks.

Post-quantum cryptography received considerable
research attention after Shor’s seminal work [6], and

NIST is in the process of selecting next-generation public-
key schemes [7]. Quantum computers have significantly
influenced symmetric key schemes and hash functions,
mainly by using Simon and Grover’s algorithms [8, 9]. In
particular, Grover’s algorithm allows quantum computers
to perform an exhaustive search on symmetric key
schemes and hash functions with quadratic speedup over
the classical approach. Since 2015, the cryptography
community has conducted extensive groundbreaking
research, both theoretical and practical, including the
analysis of block ciphers [10–13], hash functions [14–17],
and permutations [18, 19].

In a classical setting, the generic complexity required
to find a collision of an n-bit hash function is Oð2n=2Þ
according to the birthday paradox. In a quantum setting,
the generic complexity of finding collisions depends on
the settings for the resources available to the attacker.
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The BHT algorithm [20] finds collisions with a query
complexity of Oð2n=3Þ when quantum random access
memory (qRAM) of Oð2n=3Þ is available. However, given
the current state of development of quantum computers,
it is highly probable that large qRAM will not be realized
in the near future. A more realistic algorithm is the CNS
algorithm proposed in 2017 by Chailloux et al. [21],
which uses large classical memory rather than large
qRAM. This CNS algorithm finds collisions with a classi-
cal memory of Oð2n=5Þ, a query complexity of Oð22n=5Þ,
and a quantum memory of only OðnÞ. In both settings,
the parallel rho method [22] gives the tradeoff time com-
plexity T¼ 2n=2=S when finding collisions.

1.1 | Related works

Hosoyamada and Sasaki [16] proposed a novel approach
at Eurocrypt 2020, which showed that differential trails
with probabilities too low to be used for a rebound attack
on hash functions in a classical setting are available in a
quantum setting. They proposed quantum collision
attacks on Matyas–Meyer–Oseas (MMO) and Miyaguchi–
Preneel (MP) compression functions instantiated with AES
that covered more rounds than those in a classical setting.
Later, Dong et al. [15] improved the attacks on AES-MMO
by significantly reducing the qRAM required for the
attack. In ToSC 2021, quantum collision attacks on HCF-
AES-256 and Simpira v2 were also proposed [14, 19].

Dou et al. [23] proposed the first quantum rebound
attack on the Davies–Meyer (DM) compression function
when the underlying block cipher is instantiated with
ARIA. Their attack was carried out by exploiting the
degrees of freedom in states, and the probability of find-
ing collisions was calculated considering the feedforward
operation. However, the complexity of finding collisions
was inferior to the cost metric in any quantum setting
currently considered, and the processes of constructing
the attack using the degrees of freedom in the states were
incorrect. Motivated by the work published in

Hosoyamada and Sasaki [16], we revised the above issues
in detail and accordingly present attacks that are faster
than the generic attacks in the cost metric of the time–
space tradeoff. We also explored algorithms for finding
collisions with a quantum version of the rebound attack
in several double block length (DBL) hash functions.

1.2 | Contributions of this work

In this study, we describe quantum rebound attacks on
PGV, Hirose, and MJH instantiated with ARIA. For PGV
models, DM, MMO, and MP, primarily, constructions are
analyzed. Considering the structure of each compression
function, our attack targets are divided into two catego-
ries: PGV (single block length [SBL] hash functions) and
Hirose and MJH (DBL hash functions). We refer to the
PGV hash functions as ARIA-DM, ARIA-MMO, and
ARIA-MP, and to the Hirose/MJH hash functions as
ARIA-Hirose and ARIA-MJH.

We revised some issues with Dou et al.’s seven-round
quantum rebound attack on ARIA-DM and found that the
attack is possible in up to five rounds with some improved
techniques, such as two inbound phases and connection
phase. This attack can also be applied to ARIA-MMO and
ARIA-MP with the same attack complexity as before.
When S quantum computers are available, the attack
complexity is about 256:61=

ffiffiffi
S

p
. As the generic attack com-

plexity under the time–space metric is 264=S, our attack is
faster than the generic attack when S<214:78.

We also extended the five-round differential trail to
seven rounds. Our trail is constructed by exploiting 2128

degrees of freedom, which are only available in
ARIA-256, and is mounted to find collisions of DBL hash
functions, e.g., Hirose and MJH. When S quantum
computers are available, the attack complexity is about
2119:83=

ffiffiffi
S

p
and 2119:67=

ffiffiffi
S

p
, where S<216:34 and S<216:66

for Hirose and MJH, respectively.
Table 1 shows the details of the attack complexities

on different targets.

TAB L E 1 Attack results.

Target Construction Rounds Type Complexity Reference

ARIA-DM SBL 5 Free-start collision 256:61=
ffiffiffi
S

p
Section 3a

ARIA-MMO SBL 5 Collision 256:61=
ffiffiffi
S

p
Section 3a

ARIA-MP SBL 5 Collision 256:61=
ffiffiffi
S

p
Section 3a

ARIA-Hirose DBL 7 Free-start collision 2119:83=
ffiffiffi
S

p
Section 4

ARIA-MJH DBL 7 Semi-free-start collision 2119:67=
ffiffiffi
S

p
Section 4

Note: S denotes the size of the quantum computer in qubits.
aIn Dou et al. [23], an attack on reduced-round ARIA-DM was proposed. However, there were some flaws regarding the validity of the attack process and

complexity, which we consider in Section 3.
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1.3 | Paper structure

Section 2 describes ARIA, our attack target block cipher-
based hash functions, and basic quantum computation.
Section 3 briefly describes the rebound attack, the previ-
ous quantum rebound attack on seven-round ARIA-DM,
and our revised quantum rebound attacks on five-round
ARIA-DM, ARIA-MMO, and ARIA-MP. Section 4 provides
a new differential trail for seven-round ARIA and shows
that it can be used to find collisions of DBL hash func-
tions. Section 5 presents conclusions.

2 | PRELIMINARIES

Herein, we briefly describe ARIA, our attack target block
cipher-based hash functions, and the basic quantum
computation required for our attacks.

2.1 | ARIA

ARIA is a 128-bit block cipher with an SPN structure.
The wide trail strategy of AES is used throughout its algo-
rithm. ARIA can be used with three different key lengths:
128-, 192-, and 256-bit. Its number of rounds depends on
the key length, with 12, 14, and 16 rounds for ARIA-128,
ARIA-192, and ARIA-256, respectively. All states of the
algorithm are treated as 4�4 matrices with elements in
GFð28Þ (Figure 1).

The round function of ARIA first applies a round key
addition (RKA), followed by a substitution layer (SL),
and then a diffusion layer (DL). An R-round ARIA
repeats the round function R�1 times, and, in the last
round, the diffusion layer is replaced with round key
addition, which is the post-whitening key. The round
function operations of ARIA are described as follows.

2.1.1 | RKA

The internal state is XORed with a 128-bit round key.
The round keys are deduced from the master key via a
key scheduling algorithm, which is described later in this
section.

2.1.2 | SL

A nonlinear 8-bit to 8-bit S-box is applied to each byte of
the state. ARIA uses four S-boxes S1 and S2 and their
inverses S�1

1 and S�1
2 , respectively, where S1 is the same

as that of AES. In odd rounds, the S-boxes are applied
column-wise in the order ðS1,S2,S�1

1 ,S�1
2 Þ, whereas

in even rounds, they are applied in the order
ðS�1

1 ,S�1
2 ,S1,S2Þ. Figure 2 describes the difference in SLs

in odd and even rounds.

2.1.3 | DL

The internal state is multiplied by the involution binary
matrix with a branch number of eight; hence, the differ-
ence propagation over DL has the minimum branch
number of eight. Given the input state xis, the output
state yis of the DL operation is computed as follows:

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0

0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1

0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1

1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0

1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1

1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1

1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0

0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1

0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0

0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0

0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

2.1.4 | Key schedule

The key schedule algorithm of ARIA takes the master
key MK as input and outputs with 13, 15, or 17 128-bit
round keys for ARIA-128, ARIA-192, and ARIA-256,

F I GURE 1 ARIA byte ordering.

F I GURE 2 Two types of substitution layer

(SL): (A) SL in odd rounds, (B) SL in even rounds.
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respectively. First, MK is divided into two 128-bit values,
that is, KL and KR. KL presents the leftmost 128-bits of
MK , and KR presents the remaining bits. If necessary, all
or part of KR is right-padded with zeros. Then, using a
three-round 256-bit Feistel structure, W0,W 1,W 2, and
W 3 are generated from MK as follows:

W 0 ¼KL, W 1 ¼FoðW 0,CK1Þ⊕KR,

W 2 ¼FeðW 1,CK2Þ⊕W 0, W 3 ¼FoðW 2,CK3Þ⊕W 1,

where Fo and Fe denote the odd and even round func-
tions of ARIA, respectively, thereby replacing the
RKA operation with predefined constants (CK1,CK2, and
CK3) addition. The key schedule algorithm is approxi-
mated by 16�3¼ 48 S-box computations. The 17 round
keys are generated from W 0,W 1,W 2, and W 3 as follows:

k1 ¼ðW 0Þ⊕ðW1⋙19Þ, k2 ¼ðW1Þ⊕ðW 2⋙19Þ,
k3 ¼ðW 2Þ⊕ðW3⋙19Þ, k4 ¼ðW0⋙19Þ⊕ðW 3Þ,
k5 ¼ðW 0Þ⊕ðW1⋙31Þ, k6 ¼ðW1Þ⊕ðW 2⋙31Þ,
k7 ¼ðW 2Þ⊕ðW3⋙31Þ, k8 ¼ðW0⋙31Þ⊕ðW 3Þ,
k9 ¼ðW 0Þ⊕ðW1⋙61Þ, k10 ¼ðW 1Þ⊕ðW 2 ⋘ 61Þ,
k11 ¼ðW 2Þ⊕ðW3⋙61Þ, k12 ¼ðW 0 ⋘ 61Þ⊕ðW 3Þ,
k13 ¼ðW 0Þ⊕ðW1 ⋘ 31Þ, k14 ¼ðW 1Þ⊕ðW 2 ⋘ 31Þ,
k15 ¼ðW 2Þ⊕ðW3 ⋘ 31Þ, k16 ¼ðW 0 ⋘ 31Þ⊕ðW 3Þ,
k17 ¼ðW 0Þ⊕ðW1 ⋘ 19Þ:

2.2 | Selected provably secure block
cipher-based hash functions

In this section, we briefly describe the PGV [24] com-
pression functions of the SBL hash functions (DM, MMO,
and MP), and the compression functions of the DBL
hash functions (Hirose [25] and MJH [26]). The PGV
models proposed by Preneel et al. in 1993 are typical
SBL hash functions. They originally considered 64 block
cipher-based hash functions. Subsequently, 12 of these
models were demonstrated to be provably secure [27].
The Hirose compression function was proposed by
Hirose, and the MJH compression function was pro-
posed by Lee and Stam, both of which are also prov-
ably secure.

Let E : f0, 1gn�f0, 1gk !f0, 1gn be an n-bit keyed
block cipher. SBL hash functions call E once to generate
the hash value of message Mi, and we denote the chain-
ing variables by Hi. The DBL hash functions call E twice
to generate the hash value of message Mi, and we denote
the chaining variables by ðGi,HiÞ. For MJH, we define the
additionally used function θ as θðxÞ :¼ k �x, where k is a
nonzero constant, and � indicates a multiplication in F2n ;
additionally, we divide Mi into M1

i and M2
i (Mi ¼M1

i jjM2
i ).

The involution function σ commonly used in the Hirose

and MJH compression functions is defined as σðxÞ :¼ x⊕c,
where c is a nonzero constant. σ is the nonfixed point
involution function. The ith compression functions of the
SBL and DBL hash functions are described in Figure 3.

2.3 | Quantum computation

We use the standard quantum circuit model as the
quantum computation model, and we adopt fH,CNOT,
Tg(Clifford+T gates) as a basic set of quantum gates [28].
H is the single qubit Hadamard gate defined by H :

jbi 7! 1ffiffi
2

p ðj0iþð�1Þbj1iÞ,CNOT is the two-qubit con-
trolled NOT gate defined by CNOT : jaijbi 7! jaijb⊕ai,
and T is the single qubit π=8 gate defined by T : j0i 7! j0i
and T : j1i 7! e

iπ
4 j1i. We denote the identity operator on

n-qubit states as In.

2.3.1 | Quantum oracle

Consider the Boolean function f : f0, 1gn !f0, 1g. The
quantum oracle of f is modeled by the unitary operator
U f , which is defined as U f : jxij qi 7! jxij q⊕f ðxÞi, where
x � f0, 1gn and q� f0,1g. U f works on ðnþ1Þ-qubits, and
the oracle qubit jqi is flipped when f ðxÞ¼ 1; otherwise, it
is unchanged. If there is an efficient reversible classical
circuit that computes f , U f can also be efficiently imple-
mented in a quantum circuit. To construct the quantum
oracle U f , we first construct an efficient reversible classi-
cal circuit of f and substitute it with quantum gates. This

F I GURE 3 The ith compression functions of SBL and DBL

hash functions: (A) DM, (B) MMO, (C) MP, (D) Hirose, (E) MJH.
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makes it possible to uncompute temporary qubits
after use.

2.3.2 | Grover’s algorithm

Grover’s algorithm [8] is a quantum search algorithm
that can provide quadratic speedup over brute force when
finding desired data from an unstructured database. Con-
sider the following problem.

Problem 1. Let f : f0,1gn !f0,1g be a Bool-
ean function such that v :¼ jf�1ð1Þj>0 and let
f be a black box. Find x such that f ðxÞ¼ 1.

We define the probability of obtaining the solution x
as p :¼ v=2n. In a classical setting, we have to make
Oð1=pÞ classical queries to find x that satisfies f ðxÞ¼ 1. In
a quantum setting, we apply Grover’s algorithm to find
the solution x by making only Oð ffiffiffiffiffiffiffiffi

1=p
p Þ quantum

queries. That is, when used on quantum computers,
Grover’s algorithm achieves a quadratic speedup, unlike
classical algorithms.

To explain in more detail, assume that there is a
quantum circuit that performs the quantum oracle U f in
time TU f . Then, Grover’s algorithm finds x in time
TU f � ðπ=4Þ �

ffiffiffiffiffiffiffiffi
1=p

p
. Grover’s algorithm on a function f

runs the following procedure.

1. Using the Hadamard gates, prepare the following
initial state.

jψ initi :¼H�ðnþ1Þj0nij1i:

2. Set θ to a value that satisfies sin2θ¼ p and
0≤ θ≤ π=2. After setting i :¼bπ=4θc, define Df :¼
ðH�n�I1ÞðO0�I1ÞðH�n�I1Þ as the diffusion opera-
tor. Here, O0j0i¼ ð�1ÞΔx,0n jxi holds, where Δx,y is
the Kronecker delta satisfying Δx,y ¼ 1 if x¼ y; oth-
erwise, Δx,y ¼ 0. Then, perform the unitary opera-
tor Of :¼�DfU f iteratively i times for jψ initi. We
define Of as the Grover operator of f .

3. Measure the resulting state of ðOf Þijψ initi and out-
put the most significant n bits.

In Step 2, if the Grover operator Of is repeatedly
applied to jψ initi, the amplitude of the solution x is
increased. To measure the exact complexity of Grover’s
algorithm, we need to accurately measure the complexity
of U f . We elaborate on this analysis in Sections 3 and 4.

Boyer et al. [29] found that when the number of itera-
tions of Grover’s algorithm, i, is set to bπ=4θc, the proba-
bility of finding x such that f ðxÞ¼ 1 is at least 1�p. In
addition, we could consider the parallelization of

Grover’s algorithm. When the size of U f is Sf , and Sð≥ Sf Þ
quantum computers are available, each computer can
execute Grover’s algorithm in parallel, where the number
of iterations of Grover’s algorithm is bπ=4θ ffiffiffiffiffiffiffiffiffiffi

S=Sf
p c. Then,

we can find the solution in time TU f � ðπ=4Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sf =ðp �SÞ

p
with a probability of at least 1�1=e≈ 0:63 [17].

2.4 | Dedicated quantum collision
attacks

Following Hosoyamada and Sasaki’s dedicated quantum
collision attacks on AES hashing modes [16], further ded-
icated quantum attacks on AES hashing modes [15],
Hirose [14], Gimli [18], SHA-2 [17], and Simpira v2
[19] were proposed. These attacks showed that an attacker
with access to quantum computers can break more rounds
of hash functions than a single attacker using only classi-
cal computers. In a classical setting, the generic attack
complexity of finding collisions of an n-bit ideal hash
function is Oð2n=2Þ according to the birthday paradox. In
a quantum setting, the generic attack complexity of find-
ing collisions depends on the resources that the attacker
can access, and the cryptology community is currently
considering the following three quantum settings.

• The attacker can use a polynomially small quantum
computer and an exponentially large qRAM.

• The attacker can use a polynomially small quantum
computer and an exponentially large classical memory.

• The efficiency of the attacker’s quantum algorithms is
evaluated based on their time–space tradeoff.

In the first setting, the best quantum collision finding
algorithm is the BHT algorithm proposed by Brassard,
Høyer, and Tapp [20]. This algorithm finds collisions in
time Oð2n=3Þ when a qRAM of Oð2n=3Þ is available. In the
second setting, the best quantum collision finding algo-
rithm is the CNS algorithm proposed by Chailloux et al.
[21]. This algorithm finds collisions in time Oð22n=5Þ
when a quantum computer of OðnÞ and a classical mem-
ory of Oð2n=5Þ are available. Note that our attacks focus on
the third quantum setting, and we do not consider qubit
communication costs and quantum error corrections.

2.4.1 | Time–space tradeoff as a cost metric

This setting measures attack efficiency as a tradeoff
between T and S, where T is the attack time complexity,
and S is the size of the hardware required for the attack.
For a quantum attack, S is the size of the quantum com-
puters. Generally, when a classical computer of size S is
available, we can find the collisions of a random function
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in time T¼Oð2n=2=SÞ using the parallel rho method [22].
Even though this algorithm was initially proposed for
classical computers, it exhibits no logical flaws on
application to quantum computers. Thus, we can also
consider the time–space tradeoff metric as the thresh-
old for quantum attacks. If we can construct a quan-
tum attack that satisfies T �S<2n=2, then the attack is
valid in terms of the time–space tradeoff metric.

3 | QUANTUM REBOUND
ATTACKS ON ARIA-BASED SBL
HASH FUNCTIONS

In this section, we discuss the core of the rebound attack,
review the quantum rebound attack on ARIA-DM in [23],
and present our revised quantum rebound attack on
ARIA-DM, which can also be applied to ARIA-MMO and
ARIA-MP.

3.1 | Rebound attack

The rebound attack is a hash function analysis technique
first proposed by Mendel et al. [30] to attack reduced-
round Whirlpool and Grøstl. The core of this technique is
to exploit the available degrees of freedom in an internal
state and the truncated differential to fulfill the low prob-
ability part of a differential trail. This part is called the
inbound phase and is usually located in the middle of the
trail, followed by a probabilistic outbound phase. Gener-
ally, the differential propagation in a rebound attack is
designed to be dense and sparse in the inbound and out-
bound phases, respectively. Figure 4 shows an overview
of this attack. Here, F is an internal block cipher or per-
mutation divided into three parts: Fbw, F in, and Ffw.

In a quantum setting, to perform a rebound attack on
a target primitive with quantum computers, we run
Grover’s algorithm on a Boolean function f ðΔin, ΔoutÞ,
defined as f ðΔin, ΔoutÞ¼ 1, if and only if we get message
pairs that satisfy the following conditions.

1. For a given differential trail Δin !Δout, obtain an
input ðMI

1,M
I
2Þ and output pair ðMO

1 ,M
O
2 Þ that con-

form to the trail, where ðMI
1,M

I
2Þ and ðMO

1 ,M
O
2 Þ

are called starting points.

2. By propagating ðMI
1,M

I
2Þ and ðMO

1 ,M
O
2 Þ to the

beginning (Fbw) and end (Ffw) of the cipher,
respectively, check whether the differential transfor-
mations of the given differential trail are satisfied.

If the probability of a differential trail that excludes
the probability of the inbound phase is p, we must pro-
duce 1=p starting points such that at least one pair follows
the differential trail for the outbound phase. For this
approach to work, the available degrees of freedom
should be larger than 1=p.

3.2 | Quantum rebound attack of Dou
and others on ARIA-DM

Dou et al. proposed a quantum rebound attack on ARIA-
DM that covers seven rounds. They used the degrees of
freedom in the states for the attack and calculated the
probability of finding collisions considering the feedfor-
ward operation. The algorithm of the quantum rebound
attack, as described in Dou and others [23], is summa-
rized as follows (Figure 5).

1. For each of the 256 values of ΔY 3 and ΔZ4, find
the actual pairs of Y 3 and Z4 by applying Grover’s
algorithm.

2. For the desired differences ΔX3 and ΔY 5, check
whether SL�1ðY 3Þ⊕SL�1ðY 3⊕ΔY 3Þ¼ΔX3 holds
for Y 3 and ΔY 3 and whether SLðZ4⊕k5Þ⊕
SLðZ4⊕ΔZ4⊕k5Þ¼ΔY 5 holds for Z4 and ΔZ4.

3. After propagating ðX3,X3⊕ΔX3Þ and ðY 5,
Y 5⊕ΔY 5Þ to the beginning (Fbw) and end (F fw) of
the cipher, check whether the difference cancel-
ation occurs in the feedforward operation.

The white and gray boxes denote zero and nonzero
differences, respectively.

3.2.1 | Implausibility of Dou et al.’s attack

Three issues arise in Dou et al.’s attack. First, the com-
plexity of finding collisions is inferior to the cost metric
of any quantum setting currently considered. According
to Dou et al. [23], the probabilities of satisfying Steps
2 and 3 are about 2�112 and 2�56, respectively. Thus, even
if the complexity of the inbound phase is not considered,
the complexity of finding collisions is about
284ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2112�56

p
Þ, which is inferior to the generic attack

complexity of the three quantum settings in Section 2. In
particular, the probability of 2�112 in Step 2 can be
improved to 2�96; however, this improvement does not
make their attack faster than generic attacks in quantumF I GURE 4 Rebound attack framework [31].
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settings. Second, the calculation of the available degrees
of freedom they performed was incorrect. The degrees of
freedom in the states that would be required to perform
their attack are greater than 2168, although they insisted
that 2168 degrees of freedom could be obtained from the
triple ðΔY 3,ΔZ4,ΔX5Þ. However, considering the differ-
ential trail, if ΔZ4 is determined, ΔX5 is determined
accordingly. Therefore, there are only 2112 degrees of
freedom that could be obtained from the triple
ðΔY 3,ΔZ4,ΔX5Þ, and in fact, the attack is invalid. Third,
the calculation of the inbound phase was not described
accurately. The authors argued that by applying Grover’s
algorithm in Step 1, they could find compatible starting
points Y 3 and Z4 for ΔY 3 and ΔZ4, respectively. How-
ever, they did not describe the detailed process of finding
the starting points using Grover’s algorithm and calculat-
ing the required complexity. For a more accurate and
improved complexity estimation, we could apply Grover’s
algorithm to each S-box to find a matching starting point.
Note that this approach is not considered in this study.
For precise cryptanalysis, all of these issues should be
resolved.

3.3 | Revised attack on five-round ARIA-
DM, ARIA-MMO, and ARIA-MP

In this section, we describe our revised quantum rebound
attacks on five-round ARIA-DM, ARIA-MMO, and ARIA-
MP, which are valid for all key lengths of ARIA. We per-
formed a thorough analysis and found that a quantum
attack that is superior to the generic attack complexity of
a quantum setting could be constructed up to five rounds
but not seven rounds. Our attacks are faster than the
generic attack in the cost metric of the time–space trade-
off and slower than the generic attacks in other quantum
settings. For ARIA-DM, our quantum rebound attack is
used to find free-start collisions, whereas for ARIA-MMO
and ARIA-MP, it finds collisions. As all attack processes
are applied equally to the three structures, we focus on
ARIA-DM.

3.3.1 | Implementation of f

The core of our attack is to force the element of interest
in our search space to stand out among the other entries
by applying Grover’s algorithm. We denote the input–
output difference pair of the inbound phase (Figure 6) by
ðΔin, ΔoutÞ, where Δin ¼ΔY 2 and Δout ¼ΔZ3. As the
attack requires 2104 degrees of freedom, we consider Δout

as an element of F48
2 . First, we define a Boolean function:

f :F56
2 �F48

2 !F2, ð1Þ

where f ðΔin, ΔoutÞ¼ 1 holds if and only if the starting
point computed with ðΔin, ΔoutÞ satisfies the following
conditions.

1. The starting point ðX3,X3⊕ΔX3Þ satisfies the dif-
ferential transformations of part Fbw.

2. The starting point ðX3,X3⊕ΔX3Þ satisfies the dif-
ferential transformations of part Ffw.

If f ðΔin,ΔoutÞ¼ 1 holds, we can compute an input
pair ðH0,H 0

0Þ that produces collisions. We only use a frac-
tion of the degrees of freedom that Δout has and, on aver-
age, expect that there is one starting point ðX3,X3⊕ΔX3Þ
for each ðΔin, ΔoutÞ.

For a given ðΔin, ΔoutÞ, the function f ðΔin, ΔoutÞ can
be computed using a classical computer as follows.

1. Compute the differences ðΔXi
3,ΔY

i
3Þ ð0≤ i<16Þ

from ðΔY 2,ΔZ3Þ in round 3, where ΔY 2 ¼Δin and
ΔZ3 ¼Δout.

2. Given the obtained differences, solve the following
equation and find one Xi

3 on average for each
active S-box Si3 ð0≤ i<16Þ:

F I GURE 5 Quantum rebound attack on seven-round ARIA-

DM by Dou and others.
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Si3ðXi
3Þ⊕Si3ðXi

3⊕ΔXi
3Þ¼ΔYi

3: ð2Þ

Then, set X0
3 ¼ minfX0

3,X
0
3⊕ΔX0

3g, and similarly
set X1

3,X
2
3,…,X15

3 . With this process, the starting
point X3 ¼ðX0

3,X
1
3,…,X15

3 Þ is constructed. If there
are no admissible values for the pair (ΔX3,ΔY 3),
then return to Step 1.

3. Propagate the starting point ðX3,X3⊕ΔX3Þ
obtained in Step 2 to the beginning and end of the
cipher, and check whether the differential trans-
formations of the differential trail are satisfied. If
yes, f ðΔin, ΔoutÞ returns 1; else, it returns 0.

In the Fbw process of Step 3, for Y 1 to be active only
in the 0th byte, the differences of all active bytes of
X2ð¼ SL�1ðY 2ÞÞ must be the same. In Dou and others
[23], this probability was calculated as 2�56, but it should
be corrected to 2ð�8Þ�7�ð28�1Þ≈ 2�48 because there are
28� 1 differences that can be equal. This point is equally
applied in Ffw, and the probability of the outbound phase
is 2�104 considering the feedforward operation. This is why
we set the degrees of freedom to 2104 in this attack. By
applying Grover’s algorithm to the quantum oracle U f ,
which maps jΔin, Δoutijqi to jΔin, Δoutijq⊕f ðΔin, ΔoutÞi,
we can find collisions with about TU f � ðπ=4Þ �

ffiffiffiffiffiffiffiffi
2104

p

queries, where TU f is the time required to run the quan-
tum oracle U f . To estimate the overall complexity, we
need to clarify the complexity at which U f runs.

3.3.2 | Implementation of quantum oracle
U f

Below, we describe how to implement f on quantum
computers or equivalently how to implement the unitary
operator U f , defined as U f : jΔin, Δoutijqi 7!
jΔin, Δoutijq⊕f ðΔin, ΔoutÞi. Similar to previous studies
[14–16, 19], we need to define an additional function
Gi to implement U f . Gi finds, on average, one actual input
value that satisfies the input–output difference pair of
each S-box Si ð0≤ i<16Þ. Specifically, Gi outputs Xi

3 ¼
minfXi

3,X
i
3⊕ΔXi

3g that satisfies Si3ðXi
3Þ⊕Si3ðXi

3⊕ΔXi
3Þ¼

ΔYi
3 concerning the input–output difference pair

ðΔXi
3,ΔY

i
3Þ in round 3. We eliminate the requirement of

qRAM to implement a differential distribution table by
applying Grover’s algorithm to Gi. The implementation of
the quantum oracle UGi is presented in Algorithm 1.
Finally, the implementation of the quantum oracle U f is
presented in Algorithm 2.

F I GURE 6 Our quantum rebound attack on five-round

ARIA-DM.
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3.3.3 | Complexity analysis

To analyze the complexity of finding collisions, the fol-
lowing should be considered.

• The complexity of the computation of five-round
ARIA is approximated by 16�ð5þ3Þ¼ 128 S-box
computations.

• One computation of an inverse S-box is almost the
same as the computation of two S-boxes [32].

• Uncomputations are considered to free up the wires
of the quantum circuit after performing U f .

The study presented in Jaques and others [32] was
originally performed on the S-box of AES. However, S1,
that is, the S-box used in ARIA, is the same as that of AES,
and S2 is defined similarly to S1 to be an affine transfor-
mation of the inversion function over GFð28Þ. Thus, we
expect the complexity of S�1

2 to be almost twice that of S2.

Complexity of Gi

For a given ðΔXi
3,ΔY

i
3Þ, to find Xi

3 by applying Grover’s
algorithm to Gi, we need to query UGi . For odd rounds,
the complexity of Gi depends on i because SL comprises
the first two rows as S1 and S2, and the other two rows as
inverses of each S-box. As the number of queries required
by Grover’s algorithm is ðπ=4Þ�

ffiffiffiffiffi
28

p
≈ 23:65, when i¼

0,1,4,5,8,9,12,13 (corresponding to the first and second
rows), the complexity of Gi is equivalent to 2�ðπ=4Þ�ffiffiffiffiffi
28

p
�ð1=128Þ≈ 2�2:35 five-round ARIA computations,

where 128 is the number of S-boxes to which the five-
round ARIA is approximated. If i¼
2; 3; 6; 7; 10; 11; 14; 15 (corresponding to the third and
fourth rows), then the complexity of Gi is equivalent to
2�2�ðπ=4Þ�

ffiffiffiffiffi
28

p
�ð1=128Þ≈ 2�1:35 five-round ARIA

computations. Therefore, the total complexity of Gi is 8�
2�2:35þ 8�2�1:35 ≈ 22:23.

Complexity of U f

The implementation of U f includes 16 calls of Gi in
Steps 2–5, which require 22.23 five-round ARIA compu-
tations. We need to perform S-box computations from
the starting point X3 to both ends of the cipher. As there
are half inverse S-boxes in the S-box layer of each round,
we need ð8þ8�2Þ�5�2�ð1=128Þ≈ 20:9 five-round
ARIA computations. Thus, the overall complexity of U f is
2�ð22:23þ20:9Þ≈ 23:71 five-round ARIA computations.

Overall complexity of finding collisions
First, the number of qubits (or the unit of size) required
to implement DM instantiated with ARIA-128 is 256. For
ARIA-192 and ARIA-256, 320 and 384 qubits are
required, respectively. This is the only part that depends
on the key length. To estimate Sf , we need 2�128 qubits

to store ðΔin, ΔoutÞ and a single qubit for q. Steps 3 and 4
require an additional ð16�8�2þ8�2Þ¼ 272 qubits to
run Gi and compute and store the values of the input–
output difference pairs. Step 6 requires an additional 2�
128 qubits to store X3 and X 0

3. Step 8 requires an addi-
tional 128�5¼ 640 qubits. Thus, to store all values
shown in the above implementation, a total of 1425
qubits are required. We thus obtain the following:

Sf ≤ 1425=256≤ 22:48:

If we consider the parallelization of Grover’s algorithm
when Sð≥ 22:48Þ quantum computers are available, our
rebound attacks run in time ðπ=4Þ�23:71�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:48=ð2�104 �SÞ

p
≤ 256:61=

ffiffiffi
S

p
. Our attacks are faster than

the generic attack complexity 264=S in the cost metric of
the time–space tradeoff as long as 22:48 ≤ S< 214:78. Sf is
22.15 and 21.89 in the case of ARIA-192 and ARIA-256,
respectively; thus, even if the key size increases, the attack
complexity does not differ by more than a factor of 20.5.

Remark 1. Considering the structure of the
compression function, this attack is mounted as
a free-start collision attack for ARIA-DM and a
collision attack for ARIA-MMO and ARIA-MP.

4 | QUANTUM REBOUND
ATTACKS ON ARIA-BASED DBL
HASH FUNCTIONS

Herein, we provide a new differential trail for seven-
round ARIA and mount it on ARIA-Hirose and
ARIA-MJH to perform our quantum rebound attacks. We
adopt the strategy of finding collisions that satisfy the
condition ΔG0 ¼G0⊕G0

0 ¼ c in the entire compression
function, where c has one nonzero byte at the 0th posi-
tion. As all attack processes are applied equally to the
two structures, we focus on ARIA-Hirose.

4.1 | New Differential Trail for seven-
round ARIA

As in Lamberger and others [33], we propose a differen-
tial trail for seven-round ARIA with a probability of 2�112

using the degrees of freedom from the key schedule.

4.1.1 | New differential trail using two
inbound phases

We construct a trail by setting up two inbound phases and
connecting them using the connection phase (Figure 7).
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The two inbound phases are performed using the process
presented in Section 3, and the core of our attack is to thor-
oughly analyze the connection phase. First, we set inbound
phases 1 and 2 to be placed on rounds 2.5–3.0 and 4.5–5.0,
respectively, and we compute the starting points of X3 and
X5. Owing to the nature of hash functions as keyless
primitives, an attacker can choose a message pair that
satisfies a given differential trail. From this perspective,
the degrees of freedom that can be obtained from the key
schedule are used to connect the starting points of X3

and X5. Finally, ΔX0 and ΔX8 can be computed by prop-
agating the starting points ðX3,X3⊕ΔX3Þ and ðX5,X5⊕
ΔX5Þ to the beginning and end of the cipher, respectively.
As the probability of canceling one byte for the feedfor-
ward operation is 2�8 and ΔG0 ¼ c must hold, the overall
time complexity of the attack is 296�28�28 ¼ 2112.

4.1.2 | Connecting two inbound phases

The overall connection process is shown in Figure 8. To
connect the results of two inbound phases, we perform
an exhaustive search on W0ð¼KLÞ in the key schedule,

which is a search that has the highest complexity in this
attack. Recall that K4 ¼ðW 0⋙19Þ⊕ðW 3Þ and K5 ¼
ðW 0Þ⊕ðW 1⋙31Þ hold. In the key schedule, Y 4 and X5

can be connected by appropriately adjusting W 1ð¼
FoðW 0Þ⊕KRÞ according to the fixed W 0. Because k4 is
determined according to k5, the connection between X3

and Z3 must be approached probabilistically. The
detailed calculation process is as follows.

1. Compute Z3 and DLðX5Þ from starting points X3

and X5.
2. For the input–output difference pair ðΔX4,ΔY 4Þ,

obtain X4 that is compatible with the pair.
3. Fix the value of W 0 and determine W 1 such that

the given values Y 4 and DLðX5Þ can be connected.
Here, k5 is determined; thus, k4 is also determined.

4. Given the value of k4, check whether Z3⊕k4 ¼X4

holds. If not, repeat the process from Step 2.

By performing this process, we can find round keys k4
and k5 that connect X3 and X5. Notably, ΔX4 ¼ΔZ3 and
ΔY 4 ¼ΔDLðX5Þ hold, and the ΔX4 and ΔY 4 differences
are well connected.

4.2 | Quantum collision attacks on
seven-round ARIA-Hirose and ARIA-MJH

Herein, we describe our quantum rebound attacks on
seven-round ARIA-Hirose and ARIA-MJH, which are
valid for the 256-bit key length of ARIA.

4.2.1 | Implementation of f

The core of our attack is the same as that described in
Section 3. For two inbound phases, we denote the input–
output difference pair by ðΔin, ΔoutÞ¼ ðΔ1

in,Δ
2
in,

Δ1
out,Δ

2
outÞ, where ðΔ1

in,Δ
1
outÞ is the input–output differ-

ence pair of the first inbound phase, and ðΔ2
in,Δ

2
outÞ is

that of the second inbound phase. As the attack
requires 2112 degrees of freedom, we consider
Δ1

in,Δ
2
in,Δ

1
out, and Δ2

out as elements of F28
2 . First, we define

a Boolean function:

F I GURE 7 Our quantum rebound attack on seven-round

ARIA-Hirose.

F I GURE 8 The connection phase of our collision attack on

seven-round ARIA-Hirose.
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f :F28
2 �F28

2 �F28
2 �F28

2 !F2, ð3Þ

where f ðΔ1
in, Δ

2
in,Δ

1
out,Δ

2
outÞ¼ 1 holds if and only if the

starting points computed with ðΔ1
in, Δ

2
in, Δ

1
out, Δ

2
outÞ sat-

isfy the conditions listed below.

1. The starting point ðX3,X3⊕ΔX3Þ satisfies the dif-
ferential transformations of part Fbw.

2. The starting point ðX5,X5⊕ΔX5Þ satisfies the dif-
ferential transformations of part F fw.

If f ðΔ1
in,Δ

2
in,Δ

1
out,Δ

2
outÞ¼ 1 holds, we can compute the

input values that result in collisions. We only use a frac-
tion of the degrees of freedom that ðΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outÞ

has and, on average, expect that there is one pair of start-
ing points ðX3,X3⊕ΔX3Þ and ðX5,X5⊕ΔX5Þ for each
ðΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outÞ.

For a given ðΔ1
in,Δ

2
in,Δ

1
out,Δ

2
outÞ, the function

f ðΔ1
in,Δ

2
in,Δ out,Δ2

outÞ can be computed using a classical
computer as follows.

1. Choose nine random values in f0,1g8 for the state
to be constructed later.

2. Compute the differences ðΔXi
3,ΔY

i
3Þ ð0≤ i<16Þ

from ðΔY 2,ΔZ3Þ in round 3, where ΔY 2 ¼Δ1
in and

ΔZ3 ¼Δ1
out.

3. Given the obtained differences, solve the following
equation and find one Xi

3 on average for each
active S-box Si3 ð0≤ i<16Þ:

Si3ðXi
3Þ⊕Si3ðXi

3⊕ΔXi
3Þ¼ΔYi

3: ð4Þ

Then, set X0
3 ¼ minfX0

3,X
0
3⊕ΔX0

3g, and similarly
set X1

3,X
2
3,…,X15

3 . With this process, the starting
point X3 ¼ðX0

3,X
1
3,…,X15

3 Þ is constructed. If there
are no admissible values for the pair (ΔX3,ΔY 3),
then return to Step 2.

4. Compute the differences ðΔXi
5,ΔY

i
5Þ ð0≤ i<16Þ

from ðΔY 4,ΔZ5Þ in round 5 where ΔY 4 ¼Δ2
in and

ΔZ5 ¼Δ2
out.

5. Given the obtained differences, solve the following
equation and find one Xi

5 on average for each
active S-box Si5 ð0≤ i<16Þ:

Si5ðXi
5Þ⊕Si5ðXi

5⊕ΔXi
5Þ¼ΔYi

5: ð5Þ

Then, set X0
5 ¼ minfX0

5,X
0
5⊕ΔX0

5g, and similarly
set X1

5,X
2
5,…,X15

5 . With this process, the starting
point X5 ¼ðX0

5,X
1
5,…,X15

5 Þ is constructed. If there
are no admissible values for the pair (ΔX5,ΔY 5),
then return to Step 4.

6. Given the difference pair ðΔXi
4,ΔY

i
4Þ, solve

the following equation and find one Xi
4 on

average for each active S-box Si4 ði¼ 3, 4, 6, 8,
9, 13, 14Þ:

Si4ðXi
4Þ⊕Si4ðXi

4⊕ΔXi
4Þ¼ΔYi

4: ð6Þ

The seven corresponding values of Yi
4 are deter-

mined by the above solution. Compute Z4 after set-
ting the remaining nine bytes of Y 4 to the random
values chosen in Step 1.

7. Do the following for each W 0.
(a) Compute k5 that is compatible with Z4 and

starting point X5.
(b) Compute k4 from k5 and check whether

Z3⊕k4 ¼X4 holds.
If there is no admissible value for W0, then repeat
the process in Step 5. Note that the starting points X3

and X5 are now connected correctly.
8. Propagate starting points ðX3,X3⊕ΔX3Þ and

ðX5,X5⊕ΔX5Þ to the beginning and end of the cipher,
respectively. If the differential transformations of the
differential trail are satisfied, f ðΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outÞ

returns 1; otherwise, it returns 0.

We need to consider that the feedforward operation
and ΔG0 and c must be equal; therefore, the degrees of
freedom we need in this attack exceed 2112. By applying
Grover’s algorithm to the quantum oracle U f , which
maps jΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outijqi to jΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outijq⊕f

ðΔ1
in,Δ

2
in,Δ

1
out,Δ

2
outÞi, we can find collisions with about

TU f � ðπ=4Þ �
ffiffiffiffiffiffiffiffi
2112

p
queries, where TU f is the time required

to run the quantum oracle U f . To estimate the overall
complexity, we need to clarify the complexity at which
U f runs.

4.2.2 | Implementation of quantum oracle
U f

Below, we describe how to implement f on quantum
computers, or equivalently, how to implement the uni-
tary operator U f , defined as U f : jΔ1

in,Δ
2
in,Δ

1
out,

Δ2
outijqi 7! jΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outijq⊕f ðΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outÞi.

Similar to previous studies [14–16, 19], we need two
additional functions to implement U f : Gi, as discussed
in Section 3, and K. Gi was used to find X3 in Section 3;
however, here it is used to find X3,X4, and X5. Next,
we define the function K, which connects the two start-
ing points X3 and X5. That is, K outputs W 0 connecting
starting points X3 and X5, from which k5 can be
computed. The implementation of the quantum oracle
UK is presented in Algorithm 3. Finally, the implementa-
tion of the quantum oracle U f is presented in Algorithm 4.
Note that the preselected values used in Step 16 are
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chosen in a classical way before running the quantum
algorithm.

4.2.3 | Complexity analysis

The complexity of the computation of seven-round ARIA
is approximated by 16�ð7þ3Þ¼ 160 S-box computa-
tions, and the other considerations are the same as those
described in Section 3.

Complexity of K
To find W 0 and W 1 connecting starting points X3 and X5

by applying Grover’s algorithm to K, we need to query to
UK. The number of queries required is
ðπ=4Þ�

ffiffiffiffiffiffiffiffi
2128

p
≈ 263:65, which is equivalent to ðπ=4Þ�ffiffiffiffiffiffiffiffi

2128
p

�ð48=160Þ≈ 261:91 seven-round ARIA
computations.

Complexity of U f

The complexity of Gi is evaluated as 2�ðπ=4Þ�
ffiffiffiffiffi
28

p
�

ð1=160Þ≈ 2�2:67 seven-round ARIA computations for
i¼ 0; 1; 4; 5; 8; 9; 12; 13; otherwise, it is 2�2�
ðπ=4Þ�

ffiffiffiffiffi
28

p
�ð1=160Þ≈ 2�1:67. The implementation of U f

includes 39 calls of Gi in Steps 2–5, 7–10, and 12–14,
which require 20�2�2:67þ19�2�1:67 ≈ 23:19 seven-round
ARIA computations. We need to perform S-box computa-
tions from starting points X3 and X5 to both ends of the
cipher. As there are half inverse S-boxes in the S-box
layer of each round, we need ð8þ8�2Þ�5�2�
ð1=160Þ≈ 20:58 seven-round ARIA computations. The
implementation of K in Step 17 is also included. Thus,
the overall complexity of U f is 2�ð23:19þ20:58þ
261:91Þ≈ 262:91 seven-round ARIA computations.

Overall complexity of finding collisions
First, the number of qubits (or the unit of size) required
to implement Hirose instantiated with ARIA-256 is 512.
For the estimation of the Sf , we need 4�128 qubits to
store ðΔ1

in,Δ
2
in,Δ

1
out,Δ

2
outÞ and a single qubit for q. Steps 3

and 4 require an additional ð16�8�2þ8�2Þ¼ 272
qubits to run Gi and compute and store the values of the
input–output difference pairs. Steps 8 and 9 also require
272 qubits in the same manner, and as Step 13 runs Gi for
only seven bytes, 128 qubits are required. Step 17 requires
an additional 128�5 qubits, and Steps 18 and 19 require
4�128 qubits to store ðX3,X 0

3,X5,X 0
5Þ. Step 21 requires

an additional 128�5¼ 640 qubits. Thus, to store all the
values shown in the above implementation, a total of
2977 qubits are used. Hence, we obtain

Sf ≤ 2977=512≤ 22:54:

If we consider the parallelization of Grover’s algorithm
when Sð≥ 22:54Þ quantum computers are available, our
rebound attacks run in time ðπ=4Þ�262:91�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:54=ð2�112 �SÞ

p
≤ 2119:83=

ffiffiffi
S

p
. Our attacks are faster than

the generic attack complexity 2128=S in the cost metric of
time–space tradeoff as long as 22:54 ≤ S<216:34.

For ARIA-MJH, the number of qubits required for
implementation is 640. Thus, Sf ≤ 22:22 holds for ARIA-
MJH, and the attack runs in time ðπ=4Þ�262:91�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22:22=ð2�112 �SÞ
p

≤ 2119:67=
ffiffiffi
S

p
as long as

22:22 ≤ S<216:66.

Remark 2. Considering the structure of the
compression function, this attack is mounted
as a free-start collision attack for ARIA-
Hirose and a semi-free-start collision attack
for ARIA-MJH.

5 | CONCLUSIONS

In this study, we revised the quantum rebound attacks
on SBL hash functions instantiated with ARIA proposed
by Dou and others [23] and proposed new quantum
rebound attacks on several DBL hash functions instanti-
ated with ARIA. To find the collisions of hash functions,
a differential trail for five-round ARIA was mounted for
SBL hash functions, including DM, MMO, and MP, and a
differential trail for seven-round ARIA-256 using two
inbound phases and a connection phase was mounted for
DBL hash functions, including Hirose and MJH. In par-
ticular, the seven-round differential trail was newly con-
structed by exploiting the maximum 2128 degrees of
freedom in the key schedule of ARIA-256. These results
are expected to inspire the analysis of hash functions
instantiated with other byte-oriented block ciphers.
Extending our attacks to more rounds will be an interest-
ing future research topic.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of
interest.

ORCID
Jongsung Kim https://orcid.org/0000-0002-2608-8878

REFERENCES
1. K. I. S. Agency, ARIA block cipher. https://seed.kisa.or.kr/

kisa/algorithm/EgovAriaInfo.do (2022/7/10).
2. D. Kwon, J. Kim, S. Park, S. H. Sung, Y. Sohn, J. H. Song, Y.

Yeom, E.-J. Yoon, S. Lee, and J. Lee, New block cipher: ARIA,
(Int. Conf. Information Security and Cryptology, Seoul, Rep. of
Korea), 2003, pp. 432–445.

3. J. Daemen and V. Rijmen, The design of Rijndael: AES—The
advanced encryption standard, Information Security and
Cryptography, Springer, 2002.

4. J. Kim, J. Lee, C. Kim, J. Lee, and D. Kwon, A description of
the ARIA encryption algorithm, Request for Comments, RFC
Editor, 2010.

5. J.-H. Park, W.-H. Kim, J. Lee, and D. Kwon, Addition of the
ARIA cipher suites to transport layer security (TLS), Request for
Comments, RFC Editor, 2011.

6. P. W. Shor, Algorithms for quantum computation: discrete
logarithms and factoring, (Proceedings 35th Annual
Symposium on Foundations of Computer Science, Santa Fe,
NM, USA), 1994, pp. 124–134.

7. NIST, Post-quantum cryptography standardization, Sept. 2019.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
Post-Quantum-Cryptography-Standardization

8. L. K. Grover, A fast quantum mechanical algorithm for
database search, (Proceedings of the Twenty-eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA), May 1996, pp. 212–219.

9. D. R. Simon, On the power of quantum computation, SIAM
J. Comput. 26 (1997), no. 5, 1474–1483.

10. X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher,
Quantum security analysis of AES, IACR Trans. Symmetric
Cryptol. 2019 (2019), no. 2, 55–93.

11. X. Dong, Z. Li, and X. Wang, Quantum cryptanalysis on some
generalized Feistel schemes, Sci. China Inf. Sci. 62 (2019), no. 2,
22501:1–22501:12.

12. A. Hosoyamada and K. Aoki, On quantum related-key attacks
on iterated Even-Mansour ciphers, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 102-A (2019), no. 1, 27–34.

13. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia,
Quantum differential and linear cryptanalysis, IACR Trans.
Symmetric Cryptol. 2016 (2016), no. 1, 71–94.

14. A. K. Chauhan, A. Kumar, and S. K. Sanadhya, Quantum free-
start collision attacks on double block length hashing with
round-reduced AES-256, IACR Trans. Symmetric Cryptol. 2021
(2021), no. 1, 316–336.

15. X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, and L. Hu,
Quantum collision attacks on AES-like hashing with low
quantum random access memories, Asiacrypt 2020, S. Moriai
and H. Wang, (eds.), LNCS, Vol. 12492, Springer, 2020,
pp. 727–757.

16. A. Hosoyamada and Y. Sasaki, Finding hash collisions with
quantum computers by using differential trails with smaller
probability than birthday bound, Eurocrypt 2020, A. Canteaut
and Y. Ishai, (eds.), LNCS, Vol. 12106, Springer, 2020,
pp. 249–279.

17. A. Hosoyamada and Y. Sasaki, Quantum collision attacks on
reduced SHA-256 and SHA-512, Crypto 2021, LNCS,
Vol. 12825, Springer, 2021, pp. 616–646.

18. A. F. Gutiérrez, G. Leurent, M. Naya-Plasencia, L. Perrin, A.
Schrottenloher, and F. Sibleyras, New results on Gimli: Full-
permutation distinguishers and improved collisions, Asiacrypt
2020, Springer, 2020, pp. 33–63.

19. B. Ni, X. Dong, K. Jia, and Q. You, (Quantum) collision attacks
on reduced simpira v2, IACR Trans. Symmetric Cryptol. 2021
(2021), 222–248.

20. G. Brassard, P. Høyer, and A. Tapp, Quantum cryptanalysis of
hash and claw-free functions, Latin 1998, C. L. Lucchesi and
A. V. Moura, (eds.), LNCS, Vol. 1380, Springer, 1998,
pp. 163–169.

BAEK and KIM 377

https://orcid.org/0000-0002-2608-8878
https://orcid.org/0000-0002-2608-8878
https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization


21. A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher, An
efficient quantum collision search algorithm and implications
on symmetric cryptography, Asiacrypt 2017, T. Takagi and T.
Peyrin, (eds.), LNCS, Vol. 10625, Springer, 2017, pp. 211–240.

22. P. C. van Oorschot and M. J. Wiener, Parallel collision search
with application to hash functions and discrete logarithms,
(CCS ’94, Proceedings of the 2nd ACM Conference on
Computer and Communications Security, Fairfax, VA, USA),
Nov. 1994, pp. 210–218.

23. S. Dou, M. Mao, Y. Li, and D. Qiu, Quantum rebound attack to
DM structure based on ARIA algorithm, J. phys. Conf. ser. 2078
(2021), 012003.

24. B. Preneel, R. Govaerts, and J. Vandewalle, Hash functions
based on block ciphers: A synthetic approach, Crypto 1993,
D. R. Stinson, (ed.), LNCS, Vol. 773, Springer, 1993,
pp. 368–378.

25. S. Hirose, Some plausible constructions of double-block-length
hash functions, Fse 2006, M. J. B. Robshaw, (ed.), LNCS, Vol.
4047, Springer, 2006, pp. 210–225.

26. J. Lee and M. Stam, MJH: A faster alternative to MDC-2, Des.
Codes Cryptogr. 76 (2015), no. 2, 179–205.

27. J. Black, P. Rogaway, and T. Shrimpton, Black-box analysis of
the block-cipher-based hash-function constructions from PGV,
Crypto 2002, M. Yung, (ed.), LNCS, Vol. 2442, Springer, 2002,
pp. 320–335.

28. M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information (10th anniversary edition), Cambridge
University Press, 2016.

29. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on
quantum searching, Fortschritte der Physik: Progr. Phys. 46
(1998), no. 4-5, 493–505.

30. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen,
The rebound attack: Cryptanalysis of reduced whirlpool and
grøstl, (Int. Workshop on Fast Software Encryption, Leuven,
Belguim), 2009, pp. 260–276.

31. J. Jean, TikZ for cryptographers, 2016. https://www.iacr.org/
authors/tikz/

32. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia,
Implementing grover oracles for quantum key search on AES
and lowMC, Eurocrypt 2020, LNCS, Vol. 12106, Springer, 2020,
pp. 280–310.

33. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M.
Schläffer, Rebound distinguishers: Results on the full whirlpool
compression function, Asiacrypt 2009, LNCS, Vol. 5912,
Springer, 2009, pp. 126–143.

AUTHOR BIOGRAPHIES

Seungjun Baek received a BS
degree in mathematics and an MS
degree in financial information secu-
rity from Kookmin University, Seoul,
Republic of Korea, in 2019 and 2022,
respectively, where he is currently
pursuing a PhD degree in financial

information security. His research interests include
cryptanalysis, symmetric cryptosystems, and quantum
algorithms.

Jongsung Kim received his BS and
MS degrees in Mathematics from
Korea University, Republic of Korea,
in 2000 and 2002, respectively. He
received double PhD degrees on
“Combined Differential, Linear and
Related-Key Attacks on Block

Ciphers and MAC Algorithms,” completed in 2006
and 2007 at the ESAT/COSIC group of Katholieke
Universiteit Leuven, Belgium and at Engineering in
Information Security of Korea University, respec-
tively. He is a Full Professor in the Departments of
Information Security, Cryptology and Mathematics &
of Financial Information Security, Kookmin Univer-
sity, Republic of Korea. His research interests include
cryptanalysis, symmetric cryptosystems, and digital
forensics.

How to cite this article: S. Baek and J. Kim,
Quantum rebound attacks on reduced-round
ARIA-based hash functions, ETRI Journal 45
(2023), 365–378. https://doi.org/10.4218/etrij.2022-
0032

378 BAEK and KIM

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://doi.org/10.4218/etrij.2022-0032
https://doi.org/10.4218/etrij.2022-0032

