과제정보
This work was supported by Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (2017-0-00142, Development of Acceleration SW Platform Technology for On-device Intelligent Information Processing in Smart Devices, and 2021-0-00766, Development of Integrated Development Framework that supports Automatic Neural Network Generation and Deployment optimized for Runtime Environment).
참고문헌
- S. Garg, Embedded systems market-global forecast to 2023, MarketsandMarkets, 2017.
- W. Han Yun, D. Kim, H.-S. Yoon, and J. Lee, Disguised-face discriminator for embedded systems, ETRI J. 32 (2010), no. 5, 761-765. https://doi.org/10.4218/etrij.10.1510.0139
- Y. C. Yoon, S. Y. Park, S. M. Park, and H. Lim, Image classification and captioning model considering a cam-based disagreement loss, ETRI J. 42 (2019), no. 1, 67-77.
- C. M. De Sa, C. Zhang, K. Olukotun, C. Re, and C. Re, Taming the wild: A unified analysis of hogwild-style algorithms, Advances in neural information processing systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, (eds.), Curran Associates, Inc., 2015, pp. 2674-2682.
- F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, 1-bit stochastic gradient descent and application to data-parallel distributed training of speech DNNS, (INTERSPEECH, Singapore), Sept. 2014, pp. 1058-1062.
- N. Strom, Scalable distributed dnn training using commodity GPU cloud computing, (Sixteenth Annual Conference of the International Speech Communication Association), 2015, pp. 1488-1492.
- D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, Qsgd: Communication-efficient SGD via gradient quantization and encoding, Advances in neural information processing systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, (eds.), Curran Associates, Inc., 2017, pp. 1709-1720.
- A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of adaptive gradient methods in machine learning, Advances in neural information processing systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, (eds.), Curran Associates, Inc., 2017, pp. 4148-4158.
- S. J. Osher, B. Wang, P. Yin, X. Luo, M. Pham, and A. T. Lin, Laplacian smoothing gradient descent, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1806.06317
- K. Bae, H. Ryu, and H. Shin, Does adam optimizer keep close to the optimal point? arXiv preprint, 2019. https://doi.org/10.48550/arXiv.1911.00289
- D. Jimenez, L. Wang, and Y. Wang, White noise hypothesis for uniform quantization errors, SIAM J. Math. Anal. 38 (2007), no. 6, 2042-2056. https://doi.org/10.1137/050636929
- C.-R. Hwang, Laplace's method revisited: weak convergence of probability measures, Ann. Probab. 8 (1980), no. 6, 1177-1182.
- T.-S. Chiang, C.-R. Hwang, and S. J. Sheu, Diffusion for global optimization in Rn, SIAM J. Control Optim. 25 (1987), no. 3, 737-753. https://doi.org/10.1137/0325042
- S. Geman and C.-R. Hwang, Diffusions for global optimization, SIAM J. Control Optim. 24 (1986), no. 5, 1031-1043. https://doi.org/10.1137/0324060
- F. C. Klebaner, Introduction to stochastic calculus with applications, Introduction to Stochastic Calculus with Applications, Imperial College Press, 2005.
- B. Oksendal, Stochastic differential equations: An introduction with applications, Universitext, Springer Berlin Heidelberg, 2013.