DOI QR코드

DOI QR Code

Study on the Take-over Performance of Level 3 Autonomous Vehicles Based on Subjective Driving Tendency Questionnaires and Machine Learning Methods

  • Hyunsuk Kim (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Woojin Kim (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Jungsook Kim (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Seung-Jun Lee (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Daesub Yoon (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Oh-Cheon Kwon (Cognition & Transportation ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Cheong Hee Park (Department of Computer Science and Engineering, Chungnam National University)
  • 투고 : 2021.07.13
  • 심사 : 2022.01.16
  • 발행 : 2023.02.20

초록

Level 3 autonomous vehicles require conditional autonomous driving in which autonomous and manual driving are alternately performed; whether the driver can resume manual driving within a limited time should be examined. This study investigates whether the demographics and subjective driving tendencies of drivers affect the take-over performance. We measured and analyzed the reengagement and stabilization time after a take-over request from the autonomous driving system to manual driving using a vehicle simulator that supports the driver's take-over mechanism. We discovered that the driver's reengagement and stabilization time correlated with the speeding and wild driving tendency as well as driving workload questionnaires. To verify the efficiency of subjective questionnaire information, we tested whether the driver with slow or fast reengagement and stabilization time can be detected based on machine learning techniques and obtained results. We expect to apply these results to training programs for autonomous vehicles' users and personalized human-vehicle interfaces for future autonomous vehicles.

키워드

과제정보

We thank Hyung-ki Kim of Neighbor System Co. Ltd. for helping us to prepare. This work was supported by the Transportation and Logistics R&D Program of the Ministry of Land, Infrastructure, and Transport, Republic of Korea (20TLRPB131486-04, Autonomous driving vehicle [SAE Level 2,3] based human factor in-depth study).

참고문헌

  1. SAE J3016, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles, September 2016.
  2. KOTSA, (http://dvirnd.katri.kr, 2017).
  3. National Transportation Safety Board, NTSB's report collision between a sport utility vehicle operating with partial driving automation, Feb. 25, 2020.
  4. ISO/PDTR 21959, ISO TC 22/SC 139/WG 8 Road vehicles: Human performance and state in the context of automated driving: Part 1-Terms and definitions, Jan. 2018.
  5. H. S. Kim, W. J. Kim, J. S. Kim, S. Jun Lee, and D. S. Yoon, An analysis of transition characteristics of driver control authority according to NDRT type, (Proceedings of the 5th International Symposium on Future Active Safety Technology toward Zero Accidents, Blacksburg, VA, USA), Sept. 2019.
  6. H. S. Kim, W. J. Kim, J. S. Kim, S. J. Lee, D. S. Yoon, and J. H. Jo, A study on re-engagement and stabilization time on take-over transition in a highly automated driving system, MDPI Electron. 10 (2021), no. 3. https://doi.org/10.3390/electronics10030344
  7. M. Cunninghama and M. A. Regana, Autonomous vehicles: Human factors issues and future research, (Australasian Road Safety Conference, Queensland, Australia), Oct. 2015.
  8. H. S. Kim, W. J. Kim, J. S. Kim, S. J. Lee, and D. S. Yoon, An analysis of transition characteristics of driver control authority according to NDRT type, (Proceedings of the 5th International Symposium on Future Active Safety Technology toward Zero Accidents, Blacksburg, VA, USA), Sept. 2019.
  9. M. R. Endsley, Situation Awareness Global Assessment Technique (SAGAT), (Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, Dayton, OH. USA), May 1988 pp. 789-795.
  10. M. R. Endsley, Toward a theory of situation awareness in dynamic systems, Hum. Factors 37 (1995), no. 1, 32-64. https://doi.org/10.1518/001872095779049543
  11. J. C. F. de Winter, R. Happee, M. H. Martens, and N. A. Stanton, Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence, Transp. Res. Part F Traffic Psychol. Behav. 27 (2014), 196-217. https://doi.org/10.1016/j.trf.2014.06.016
  12. E. L. Wiener, Human Factors of Advanced Technology ("glass cockpit") Transport Aircraft, NASA Contractor Report No. 177528, NASAAmes Research Center, Moffett Field, CA, USA, 1989.
  13. E. Hollnagel and D. D. Woods, Joint cognitive systems: Foundations of cognitive systems engineering, Taylor and Francis, Boca Raton, FL, 2005.
  14. H. S. Kim, J. S. Kim, W. J. Kim, and D. S. Yoon, A study on the effects of providing situation awareness information for the control authority transition of automated vehicle, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2019. https://doi.org/10.1109/ICTC46691.2019.8939867
  15. J. S. Kim, H. S. Kim, W. J. Kim, and D. S. Yoon, Take-over performance analysis depending on the drivers' non-driving secondary tasks in automated vehicles, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2018. https://doi.org/10.1109/ICTC.2018.8539431
  16. D. Chawla, G. Rees, and K. J. Friston, The physiological basis of attentional modulation in extrastriate visual areas, Nat. Neurosci. 2 (1999), no. 7, 671-676. https://doi.org/10.1038/10230
  17. P. Fazekas and B. Naray, Pre-cueing effects: Attention or mental imagery? Front. Psychol. 8 (2017), 222. https://doi.org/10.3389/fpsyg.2017.00222
  18. W. J. Kim, J. S. Kim, H. S. Kim, S. J. Lee, and D. S. Yoon, Analysis on the effect of the pre-cue of take-over request of Level 3 automated vehicles, (Proceedings of 2020 Fall Conference of ESK), 2020.
  19. W. J. Kim, J. S. Kim, H. S. Kim, S. J. Lee, and D. S. Yoon, A study on the driver's response performance according to modality of planned TOR in automated driving, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2019. https://doi.org/10.1109/ICTC46691.2019.8939714
  20. H. S. Kim, W. J. Kim, J. S. Kim, S. Jun Lee, and D. S. Yoon, Design of driver readiness evaluation system in automated driving environment, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2018. https://doi.org/10.1109/ICTC.2018.8539408
  21. J. S. Kim, W. J. Kim, H. S. Kim, and D. S. Yoon, A study on the correlation between subjective driver readiness and NDRT type during automated driving, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2020. https://doi.org/10.1109/ICTC49870.2020.9289293
  22. J. S. Kim, H. S. Kim, W. J. Kim, S. J. Lee, O. C. Kwon, and D. S. Yoon, A novel study on subjective driver readiness in terms of non-driving related tasks and take-over performance, ICT Exp. 8 (2022), no. 1, 91-96.
  23. J. S. Kim, H. S. Kim, W. J. Kim, S. J. Lee, and D. S. Yoon, Investigation on the effect of mental workload on the time-related take-over performance, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2020. https://doi.org/10.1109/ICTC49870.2020.9289513
  24. A. Bucchia, C. Sangiorgi, and V. Vignali, Traffic psychology and driver behavior, SIIV-5th International Congress-Sustainability of Road Infrastructures, Proc. Soc. Behav. Sci. 53 (2012), 973-980. https://doi.org/10.1016/j.sbspro.2012.09.946
  25. J. T. Reason, Human error, Cambridge University Press, New York, 1990.
  26. J. T. Reason, A. S. R. Manstead, S. Stradling, J. Baxter, and K. Campbell, Errors and violations on the roads, Ergonomics 33 (1990), no. 10-11, 1315-1332. https://doi.org/10.1080/00140139008925335
  27. W. L. G. Verschuur and K. Hurts, Modeling safe and unsafe driving behaviour, Accident Anal. Prevention 40 (2008), no. 2, 644-656. https://doi.org/10.1016/j.aap.2007.09.001
  28. J. S. Oh and S. C. Lee, The structure of driving behavior determinants and its relationship between reckless driving behavior, Korean J. Psychol. Soc. Issues 17 (2011), no. 2, 175-197.
  29. Y. S. Hwang, D. H Kim, B. T. Jang, and H. K. Choi, A study on discriminating risky driving using the psychological characteristics and attitudes for providing a personalized driving environment, (International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea), Oct. 2019. https://doi.org/10.1109/ICTC46691.2019.8939942
  30. NASA, NASA TLX: Task Load Index, Available from: http://humansystems.arc.nasa.gov/groups/tlx/index.html, [last accessed 062021]
  31. Federal Highway Research Institute (BASt), Explanation of 5.6.1.4 transition demand and system operation during transition, In Informal document-ACSF-05-07, Federal Highway Research Institute, Bergisch Gladbach, Germany, 2016.
  32. P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining, Pearson Addison Wesley, 2006.
  33. J. S. Wang, C. W. Lin, and Y. T. C. Yang, A k-nearest-neighbor classifier with heart rate variability feature-based transformation algorithm for driving stress recognition, Neurocomputing 116 (2013), 136-143. https://doi.org/10.1016/j.neucom.2011.10.047
  34. P. Cunningham and S. J. Delany, k-Nearest neighbour classifiers, Technical Report UCD-CSI-2007-4, March 27, 2007.
  35. S. J. Delany and P. Cunningham, An analysis of case-base editing in a spam filtering system, (European Conference on Case-Based Reasoning: Advances in Case-Based Reasoning), Madrid, Spain, 2004, pp. 128-141
  36. B. W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta (BBA) Protein Struct. 405 (1975), no. 2, 442-451. https://doi.org/10.1016/0005-2795(75)90109-9
  37. S. Babu, S. N. Gajanan, and P. Sanyal, Food security, poverty and nutrition policy analysis: Statistical method and applications, 2nd ed., Elsevier, 2014.
  38. S. Tahmasseby, D. Muley, and B. W. Wink, Performance evaluation of vehicle restraint systems in the context of design and installation, Civil Eng. J. 7 (2021), no. 3, 449-460. https://doi.org/10.28991/cej-2021-03091665
  39. M. W. Park, S. W. Lee, and W. Y. Han, Development of steering control system for autonomous vehicle using geometry-based path tracking algorithm, ETRI J. 37 (2015), no. 3, 617-625. https://doi.org/10.4218/etrij.15.0114.0123
  40. S. Y. Noh, B. J. Park, K. H. An, Y. B. Koo, and W. Y. Han, Co-pilot agent for vehicle/driver cooperative and autonomous driving, ETRI J. 37 (2015), no. 5, 1032-1043. https://doi.org/10.4218/etrij.15.0114.0095
  41. D. Asljung, J. Nilsson, and J. Fredriksson, Using extreme value theory for vehicle level safety validation and implications for autonomous vehicles, IEEE Trans. Intell. Veh. 2 (2017), no. 4, 288-297. https://doi.org/10.1109/TIV.2017.2768219
  42. S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications, IEEE Internet Things J. 5 (2018), no. 2, 829-846. https://doi.org/10.1109/JIOT.2018.2812300
  43. H. Marzbani, H. Khayyam, C. N. To, D. V. Quoc, and R. N. Jazar, Autonomous vehicles: Autodriver algorithm and vehicle dynamics, IEEE Trans. Veh. Technol. 68 (2019), no. 4, 3201-3211. https://doi.org/10.1109/TVT.2019.2895297