DOI QR코드

DOI QR Code

Short packet communication in underlay cognitive network assisted by an intelligent reflecting surface

  • Pham Ngoc Son (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education) ;
  • Tran Trung Duy (Department of Electrical Engineering, Posts and Telecommunications Institute of Technology) ;
  • Pham Viet Tuan (Faculty of Physics, University of Education, Hue University) ;
  • Tan-Phuoc Huynh (School of Computing and Information Technology, Eastern International University (EIU))
  • Received : 2021.11.13
  • Accepted : 2022.06.23
  • Published : 2023.02.20

Abstract

We propose short packet communication in an underlay cognitive radio network assisted by an intelligent reflecting surface (IRS) composed of multiple reconfigurable reflectors. This scheme, called the IRS protocol, operates in only one time slot (TS) using the IRS. The IRS adjusts its phases to give zero received cumulative phase at the secondary destination, thereby enhancing the end-to-end signal-to-noise ratio. The transmitting power of the secondary source is optimized to simultaneously satisfy the multi-interference constraints, hardware limitations, and performance improvement. Simulation and analysis results of the average block error rates (BLERs) show that the performance can be enhanced by installing more reconfigurable reflectors, increasing the blocklength, lowering the number of required primary receivers, or sending fewer information bits. Moreover, the proposed IRS protocol always outperforms underlay relaying protocols using two TSs for data transmission, and achieves the best average BLER at identical transmission distances between the secondary source and secondary destination. The theoretical analyses are confirmed by Monte Carlo simulations.

Keywords

Acknowledgement

This work belongs to the project grant No: T2022-55 funded by Ho Chi Minh City University of Technology and Education, Vietnam.

References

  1. H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana, W. Bao, Y. Li, and B. Vucetic, Ultra-reliable low latency cellular networks: use cases, challenges and approaches, IEEE Commun. Mag. 56 (2018), no. 12, 119-125. 
  2. Y. Gu, H. Chen, Y. Li, L. Song, and B. Vucetic, Short-packet two-way amplify-and-forward relaying, IEEE Signal Process. Lett. 2 (2018), no. 7, 263-267.  https://doi.org/10.1109/LSP.2017.2782828
  3. Y. Gu, H. Chen, Y. Li, and B. Vucetic, Ultra-reliable short-packet communications: half-duplex or full-duplex relaying? IEEE Wireless Commun. Lett. 7 (2018), no. 3, 348-351.  https://doi.org/10.1109/LWC.2017.2777857
  4. O. L. A. Lopez, E. M. G. Fern andez, R. D. Souza, and H. Alves, Ultra-reliable cooperative short-packet communications with wireless energy transfer, IEEE Sensors J. 18 (2018), no. 5, 2161-2177.  https://doi.org/10.1109/JSEN.2018.2789480
  5. P. Nouri, H. Alves, and M. Latva-aho, Performance analysis of ultra-reliable short message decode and forward relaying protocols, EURASIP J. Wirel. Commun. Netw. 2018 (2018), 1-14.  https://doi.org/10.1186/s13638-017-1011-3
  6. X. Huang and N. Yang, On the block error performance of short-packet non-orthogonal multiple access systems, (Proceedings of the ieee International Conference on Communications, Shanghai, China), 2019, pp. 1-7. 
  7. X. Lai, T. Wu, Q. Zhang, and J. Qin, Average secure bler analysis of noma downlink short-packet communication systems in flat rayleigh fading channels, IEEE Trans. Wirel. Commun. 20 (2021), no. 5, 2948-2960.  https://doi.org/10.1109/TWC.2020.3045736
  8. X. Lai, Q. Zhang, and J. Qin, Cooperative noma short-packet communications in flat rayleigh fading channels, IEEE Trans. Veh. Technol. 68 (2019), no. 6, 6182-6186.  https://doi.org/10.1109/TVT.2019.2912391
  9. D. Marasinghe, N. Rajatheva, and M. Latva-Aho, Block error performance of NOMA with harq-cc in finite blocklength, (Proceedings of the ieee International Conference on Communications Workshops, Dublin, Ireland), 2020, pp. 1-6. 
  10. Y. Yu, H. Chen, Y. Li, Z. Ding, and B. Vucetic, On the performance of non-orthogonal multiple access in short-packet communications, IEEE Commun. Lett. 22 (2018), no. 3, 590-593.  https://doi.org/10.1109/LCOMM.2017.2786252
  11. J. Zheng, Q. Zhang, and J. Qin, Average block error rate of downlink noma short-packet communication systems in nakagami- m fading channels, IEEE Commun. Lett. 23 (2019), no. 10, 1712-1716.  https://doi.org/10.1109/LCOMM.2019.2930999
  12. C. Li, N. Yang, and S. Yan, Optimal transmission of short-packet communications in multiple-input single-output systems, IEEE Trans. Veh. Technol. 68 (2019), no. 7, 7199-7203.  https://doi.org/10.1109/TVT.2019.2917080
  13. D.-D. Tran, S. K. Sharma, S. Chatzinotas, I. Woungang, and B. E. Ottersten, Short-packet communications for mimo noma systems over nakagami-m fading: BLER and minimum blocklength analysis, IEEE Trans. Veh. Technol. 70 (2021), no. 4, 3583-3598.  https://doi.org/10.1109/TVT.2021.3066367
  14. Y. Chen, Z. Xiang, X. Qiao, T. Zhang, and J. Zhang, Secure short-packet communications in cognitive internet of things, (Proceedings of the 2020 ieee 3rd International Conference on Electronics and Communication Engineering (icece), Xi'an, China), 2020, pp. 31-36. 
  15. Y. Chen, T. Zhang, Y. Zhang, B. Yu, and Y. Cai, Relay-assisted secure short-packet communications in cognitive internet of things, (Proceedings of the 2021 IEEE International Conference on Communications workshops, Montreal, Canada), 2021, pp. 1-6. 
  16. Y. Chen, Y. Zhang, B. Yu, T. Zhang, and Y. Cai, Relay-assisted secure short-packet transmission in cognitive IoT with spectrum sensing, China Commun. 18 (2021), no. 12, 37-50.  https://doi.org/10.23919/JCC.2021.12.002
  17. C. D. Ho, T. V. Nguyen, T. Huynh-The, T. T. Nguyen, D. B. D. Costa, and B. An, Short-packet communications in wireless-powered cognitive iot networks: performance analysis and deep learning evaluation, IEEE Trans. Veh. Technol. 70 (2021), no. 3, 2894-2899.  https://doi.org/10.1109/TVT.2021.3061157
  18. H. Hu, Y. Huang, G. Cheng, Q. Kang, H. Zhang, and Y. Pan, Optimization of energy efficiency in uav-enabled cognitive IoT with short packet communication, IEEE Sensors J. 22 (2021), 12357-12368. https://doi.org/10.1109/JSEN.2021. 3130581 
  19. T. H. Vu, T. V. Nguyen, T. T. Nguyen, and S. Kim, Performance analysis and deep learning design of wireless powered cognitive NOMA IoT short-packet communications with imperfect csi and sic, IEEE Internet Things J. 9 (2022), no.13, 10464-10479. https://doi.org/10.1109/JIOT.2021.3121421 
  20. A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, Breaking spectrum gridlock with cognitive radios: an information theoretic perspective, Proc. IEEE 97 (2009), no. 5, 894-914.  https://doi.org/10.1109/JPROC.2009.2015717
  21. T. Manimekalai, S. R. Joan, and T. Laxmikandan, Throughput maximization for underlay cr multicarrier noma network with cooperative communication, ETRI J. 42 (2020), no. 6, 846-858.  https://doi.org/10.4218/etrij.2019-0265
  22. S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans, and T. A. Tsiftsis, Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization, IEEE Trans. Commun. 68 (2020), no. 10, 6552-6567.  https://doi.org/10.1109/TCOMM.2020.3008402
  23. Q. Wu and R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming, IEEE Trans. Wirel. Commun. 18 (2019), no. 11, 5394-5409.  https://doi.org/10.1109/TWC.2019.2936025
  24. L. Yang, Y. Yang, D. B. D. Costa, and I. Trigui, Outage probability and capacity scaling law of multiple ris-aided networks, IEEE Wirel. Commun. Lett. 10 (2021), no. 2, 256-260.  https://doi.org/10.1109/LWC.2020.3026712
  25. E. Bjornson, Ozdogan O., and E. G. Larsson, Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?, IEEE Wireless Commun. Lett. 9 (2020), no. 2, 244-248.  https://doi.org/10.1109/LWC.2019.2950624
  26. A. A. Boulogeorgos and A. Alexiou, Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying, IEEE Access 8 (2020), 94463-94483.  https://doi.org/10.1109/ACCESS.2020.2995435
  27. M. D. Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D. T. Phan-Huy, O. Simeone, R. Zhang, and M. Debbah, Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison, IEEE Open J. Commun. Soc. 1 (2020), 798-807.  https://doi.org/10.1109/OJCOMS.2020.3002955
  28. T. T. T. Dao and P. N. Son, Multi-constraint two-way underlay cognitive network using reconfigurable intelligent surface, Wireless Netw. 28 (2022), 2017-2030. https://doi.org/10.1007/ s11276-022-02959-1 
  29. D. Xu, X. Yu, Y. Sun, D. W. K. Ng, and R. Schober, Resource allocation for irs-assisted full-duplex cognitive radio systems, IEEE Trans. Commun. 68 (2020), no. 12, 7376-7394.  https://doi.org/10.1109/TCOMM.2020.3020838
  30. J. Yuan, Y. C. Liang, J. Joung, G. Feng, and E. G. Larsson, Intelligent reflecting surface-assisted cognitive radio system, IEEE Trans. Commun. 69 (2021), no. 1, 675-687.  https://doi.org/10.1109/TCOMM.2020.3033006
  31. L. Zhang, C. Pan, Y. Wang, H. Ren, and K. Wang, Robust beamforming design for intelligent reflecting surface aided cognitive radio systems with imperfect cascaded CSI, IEEE Trans. Cogn. Commun. Netw. 8 (2022), no. 1, 186-201.  https://doi.org/10.1109/TCCN.2021.3107510
  32. R. I. Gradshteyn, I. S. Jeffrey, and A. D. Zwillinger, Table of Integral, Series and Products, 7th ed., Elsevier, Amsterdam, 2007. 
  33. A. A. Alkheir and M. Ibnkahla, An accurate approximation of the exponential integral function using a sum of exponentials, IEEE Commun. Lett. 17 (2013), no. 7, 1364-1367.  https://doi.org/10.1109/LCOMM.2013.060513.130403
  34. T. T. Duy, G. C. Alexandropoulos, V. T. Tung, V. N. Son, and T. Q. Duong, Outage performance of cognitive cooperative networks with relay selection over double-rayleigh fading channels, IET Commun. 10 (2016), no. 1, 57-64.  https://doi.org/10.1049/iet-com.2015.0236
  35. K. Tourki, K. A. Qaraqe, and M. Alouini, Outage analysis for underlay cognitive networks using incremental regenerative relaying, IEEE Trans. Veh. Technol. 62 (2013), no. 2, 721-734.  https://doi.org/10.1109/TVT.2012.2222947
  36. D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, Performance analysis of intelligent reflective surfaces for wireless communication, (Proceedings of the ieee International Conference on Communications, Dublin, Ireland), 2020, pp. 1-6. 
  37. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 2nd ed., McGraw-Hill, New York, 2002. 
  38. Y. Liu, Z. Ding, M. Elkashlan, and J. Yuan, Nonorthogonal multiple access in large-scale underlay cognitive radio networks, IEEE Trans. Veh. Technol. 65 (2016), no. 12, 10152-10157.  https://doi.org/10.1109/TVT.2016.2524694
  39. P. N. Son, T. T. Duy, and K. Ho-Van, Sic-coding schemes for underlay two-way relaying cognitive networks, Wirel. Commun. Mob. Comput. 2020 (2020), 1-17.  https://doi.org/10.1155/2020/8867148
  40. Z. Bai, J. Jia, C. Wang, and D. Yuan, Performance analysis of snr-based incremental hybrid decode-amplify-forward cooperative relaying protocol, IEEE Trans. Commun. 63 (2015), no. 6, 2094-2106.  https://doi.org/10.1109/TCOMM.2015.2427166
  41. S. Ikki and M. H. Ahmed, Performance analysis of cooperative diversity wireless networks over nakagami-m fading channel, IEEE Commun. Lett. 11 (2007), no. 4, 334-336.  https://doi.org/10.1109/LCOM.2007.348292
  42. T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, High-performance cooperative demodulation with decode-and-forward relays, IEEE Trans. Commun. 55 (2007), no. 7, 1427-1438. https://doi.org/10.1109/TCOMM.2007.900631