DOI QR코드

DOI QR Code

MEA 기반 신경제약 스크리닝 기술 개발 동향

Trends in MEA-based Neuropharmacological Drug Screening

  • 김용희 (사이버브레인연구실) ;
  • 정상돈 (사이버브레인연구실)
  • Y.H. Kim ;
  • S.D. Jung
  • 발행 : 2023.02.01

초록

The announcement of the US Environmental Protection Agency that it will stop conducting or funding experimental studies on mammals by 2035 should prioritize ongoing efforts to develop and use alternative toxicity screening methods to animal testing. Toxicity screening is likely to be further developed considering the combination of human-induced pluripotent-stem-cell-derived organ-on-a-chip and multielectrode array (MEA) technologies. We briefly review the current status of MEA technology and MEA-based neuropharmacological drug screening using various cellular model systems. Highlighting the coronavirus disease pandemic, we shortly comment on the importance of early prediction of toxicity by applying artificial intelligence to the development of rapid screening methods.

키워드

과제정보

본 연구는 한국전자통신연구원 연구운영비지원사업의 일환으로 수행되었음[22ZB1160, ICT 창의기술 개발].

참고문헌

  1. L.G. Costa et al., "Neurotoxicity of pesticides: A brief review," Front. Biosci., vol. 13, 2008, pp. 1240-1249. https://doi.org/10.2741/2758
  2. E.J. Hill, "Differentiating human NT2/D1 neurospheres as a versatile in vitro 3D model system for developmental neurotoxicity testing," Toxicology, vol. 249, 2008, pp. 243-250. https://doi.org/10.1016/j.tox.2008.05.014
  3. J.M. Breier et al., "Development of a high throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells," Toxicol. Sci., vol. 105, 2008, pp. 119-133. https://doi.org/10.1093/toxsci/kfn115
  4. N.M. Radio and W.R. Mundy, "Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth," Neurotoxicology, vol. 29, 2008, pp. 361-376. https://doi.org/10.1016/j.neuro.2008.02.011
  5. J. Gao et al., "Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording," Trends Anal. Chem., vol. 133, 2020, article no. 116082.
  6. C.A. Thomas et al., "A miniature microelectrode array to monitor the bioelectric activity of cultured cells," Exp. Cell Res., vol. 74, 1972, pp. 61-66. https://doi.org/10.1016/0014-4827(72)90481-8
  7. U. Egert et al., "A noble organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode array," Brain Res. Protoc., vol. 2, 1998, pp. 229-242. https://doi.org/10.1016/S1385-299X(98)00013-0
  8. S.M. Wellman, et al., "A materials roadmap to functional neural interface design," Adv. Func. Mater., vol. 28, 2018, article no. 1701269.
  9. S .F . Cogan, "Neural stimulation and recording electrodes," Annu. Rev. Biomed. Eng., vol. 10, 2008, pp. 275-309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518
  10. Y.H. Kim et al., "Iridium oxide on indium-tin oxide nanowires: An all metal oxide heterostructured multi-electrode array for neuronal interfacing," Sens. Act. B, vol. 273, 2018, pp. 718-725. https://doi.org/10.1016/j.snb.2018.06.045
  11. Y.H. Kim et al., "Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles," Biomed. Microdevices, vol. 18, 2016.
  12. Y.H. Kim et al., "In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays," J. Neural Eng., vol. 12, 2015, article no. 066029.
  13. Y.H. Kim et al., "Fluoropolymer-based flexible neural prosthetic electrodes for reliable neural interfacing," ACS Appl. Mater. Interfaces, vol. 9, 2017, article no. 43420.
  14. A.D. Marblestone et al., "Physical principles for scalable neural recording," Front. Comput. Neurosci., vol. 7, 2013, article no. 137.
  15. A.I. Grainger et al., "In vitro models for seizure-liability testing using induced pluripotent stem cells," Front. Neurosci., vol. 12, 2018, article no. 590.
  16. N. Matsuda et al., "Raster plots machine learning to predict the seizure liability of drugs and indentify drugs," Sci. Rep., vol. 22, 2022, article no. 2281.
  17. M.A. Rogawskiet et al., "Current understanding of the mechanism of action of the antiepileptic drug lacosamide," Epilepsy Res., vol. 110, 2015, pp. 189-205. https://doi.org/10.1016/j.eplepsyres.2014.11.021
  18. J.A. Bradley et al., "In vitro screening for seizure liability using microelectrode array technology," Toxicol. Sci., vol. 163, 2018, pp. 240-253. https://doi.org/10.1093/toxsci/kfy029
  19. P.H. St George-Hyslop and A. Petit, "Molecular biology and genetics of Alzheimer's disease," C. R. Biol., vol. 328, 2005, pp. 119-130. https://doi.org/10.1016/j.crvi.2004.10.013
  20. B.W. Henderson et al., "Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid," Sci. Signal, vol. 12, 2019, article no. 587.
  21. Z. Siskova et al., "Dendritic structural degeneration is functionally linked to cellular hyper excitability in a mouse model of Alzheimer's disease," Neuron, vol. 84, 2014, pp. 1023-1033. https://doi.org/10.1016/j.neuron.2014.10.024
  22. F. Yang et al. "Curcumin inhibits formation of amyloid β-oligomers and fibrils, binds plaques, and reduces amyloid in vivo," J. Biol. Chem., vol. 280, 2005, pp. 5892-5901. https://doi.org/10.1074/jbc.M404751200
  23. H. Amin et al., "High-resolution bioelectrical imaging of Aβ-induced network dysfunction on CMOS-MEAs for neurotoxicity and rescue studies," Sci. Rep., vol. 7, 2017, article no. 2460.
  24. A. Pelkonene et al., "Functional characterization of human pluripotent stem cell-derived models of the brain with microelectrode arrays," Cells, vol. 11, no. 1, 2022, article no. 106.
  25. R.F. Halliwell et al., "An electrophysiological and pharmacological study of the properties of human iPSC-derived neurons for drug discovery," Cells, vol. 21, 2021, article no. 1953.
  26. D. Jans et al., "Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes," J. Pharmacol. Tox. Met., vol. 87, 2017, pp. 48-52. https://doi.org/10.1016/j.vascn.2017.05.003
  27. A. Zwartsen et al., "Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings," J. Mol. Cell. Cardiol., vol. 136, 2019, pp. 102-112. https://doi.org/10.1016/j.yjmcc.2019.09.007
  28. A.E. Danku et al., "Organ-on-a-chip: A survey of technical results and problems," Front. Bioeng. Biotechnol., vol. 10, 2022, article no. 840674.
  29. B. Molina-Martinez et al., "A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes," Biofabrication, vol. 14, 2022, article no. 025004.
  30. https://www.science.org/content/article/us-epa-eliminate-all-mammal-testing-2035.
  31. D. Cabrera-Garcia et al., "Early prediction of developing spontaneous activity in cultured neuronal networks," Sci. Rep., vol. 11, 2021, article no. 20407.