DOI QR코드

DOI QR Code

Accurate Long-Term Evolution/Wi-Fi hybrid positioning technology for emergency rescue

  • Myungin Ji (City & Transportation ICT Research Department, Electronics and Telecommunications Research Institute) ;
  • Ju-il Jeon (City & Transportation ICT Research Department, Electronics and Telecommunications Research Institute) ;
  • Kyeong-Soo Han (City & Transportation ICT Research Department, Electronics and Telecommunications Research Institute) ;
  • Youngsu Cho (City & Transportation ICT Research Department, Electronics and Telecommunications Research Institute)
  • Received : 2022.06.09
  • Accepted : 2022.10.17
  • Published : 2023.12.10

Abstract

It is critical to estimate the location using only Long-Term Evolution (LTE) and Wi-Fi information gathered by the user's smartphone and deployable for emergency rescue, regardless of whether the Global Positioning System is received. In this research, we used a vehicle to gather LTE and Wi-Fi wireless signals over a large area for an extended period of time. After that, we used the learning technique to create a positioning database that included both collection and noncollection points. We presented a two-step positioning algorithm that utilizes coarse localization to discover a rough location in a wide area rapidly and fine localization to estimate a particular location based on the coarse position. We confirmed our technology utilizing different sorts of devices in four regional types that are generally encountered: dense urban, urban, suburban, and rural. Results presented that our algorithm can satisfactorily achieve the target accuracy necessary in emergency rescue circumstances.

Keywords

Acknowledgement

This work was supported by Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01401, Multi-source based 3D emergency LOCalization using machine learning techniques).

References

  1. Federal Communications Commission (FCC), Wireless E911 location accuracy requirements, PS Docket No. 07-114, Jan. (2015).
  2. European Emergency Number Association (EENA) Operations Document, Caller location in support of emergency services, EENA Operations Document, 2, (2014).
  3. A. F. G. Ferreira, D. M. A. Fernandes, A. P. Catarino, and J. L. Monteiro, Localization and positioning systems for emergency responders: A survey, IEEE Commun. Surv. Tutorials 19 (2017), 2836-2870. https://doi.org/10.1109/COMST.2017.2703620
  4. J. A. del Peral-Rosado, R. Raulefs, J. A. Lopez-Salcedo, and G. Seco-Granados, Survey of cellular mobile radio localization methods: From 1G to 5G, IEEE Commun. Surv. Tutorials 20 (2018), 1124-1148. https://doi.org/10.1109/COMST.2017.2785181
  5. P. Sapiezynski, R. Gatej, A. Mislove, and S. Lehmann, Opportunities and challenges in crowdsourced wardriving, (Proceedings of the 2015 ACM Conf. on Internet Measurement, Tokyo, Japan), Oct. 2015, pp. 267-273.
  6. R. U. Mondal, T. Ristaniemi, and J. Turkka, Cluster-based RF fingerprint positioning using LTE and WLAN outdoor signals, (Proceedings of the 10th IEEE Int. Conf. on Information, Communications and Signal Processing, Singapore), Dec. 2015, pp. 1-5.
  7. D. Pei, J. Gong, and X. Xu, An HMM-based localization scheme using adaptive forward algorithm for LTE networks, (Proceedings of the 10th IEEE Int. Conf. on Wireless Communications and Signal Processing, Hangzhou, China), Oct. 2018, pp. 1-6.
  8. T. Hiltunen, J. Turkka, R. Mondal, and T. Ristaniemi, Performance evaluation of LTE radio fingerprint positioning with timing advancing, (Proceedings of the 10th IEEE Int. Conf. on Information, Communications and Signal Processing, Singapore), 2015, pp. 1-5.
  9. L. Ni, Y. Wang, H. Tang, Z. Yin, and Y. Shen, Accurate localization using LTE signaling data, (Proceedings of IEEE Int. Conf. on Computer and Information Technology, Helsinki, Finland), 2017, pp. 268-273.
  10. G. Pecoraro, S. Di Domenico, E. Cianca, and M. De Sanctis, CSI-based fingerprinting for indoor localization using LTE signals, EURASIP J. Adv. Signal Process. 2018 (2018), 49.
  11. H. Zhang, Z. Zhang, S. Zhang, S. Xu, and S. Cao, Fingerprint-based localization using commercial LTE signals: A field-trial study, (Proceedings of the 90th IEEE Vehicular Technology Conference, Honolulu, HI, USA), 2018, pp. 1-5.
  12. 3rd Generation Partnership Project (3GPP), Radio measurement collection for minimization of drive tests (MDT), Technical Specification 37.320. V14.0.0 (2017-03), (2017).
  13. R. Mondal, J. Turkka, T. Ristaniemi, and T. Henttonen, Positioning in heterogeneous small cell networks using MDT RF fingerprints, (Proceedings of the 1st Int. Black Sea Conf. Communications and Networking, Batumi, Georgia), 2013, pp. 127-131.
  14. W. Fang and B. Ran, An accuracy and real-time commercial localization system in LTE networks, IEEE Access. 8 (2020), 120160-120172. https://doi.org/10.1109/ACCESS.2020.3004490
  15. P. Qi, Y. Zhao, F. Gunnarsson, and K. Zhao, Fingerprint with particle filtering for positioning based on MDT, (Proceedings of the 32nd IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland), 2021, 1273-1278.
  16. W. Zhang, H. Huang, and X. Tian, Gaussian process based radio map construction for LTE localization, (Proceedings of the 9th Int. Conf. Wireless Commun. Signal Process, Sanjing, China), Oct. 2017, pp. 1-6.
  17. X. Tian, X. Wu, H. Li, and X. Wang, RF fingerprints prediction for cellular network positioning: A subspace identification approach, IEEE Trans Mobile Comput. 19 (2020), 450-465. https://doi.org/10.1109/TMC.2019.2893278
  18. F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerosp. Electron. Syst. Mag. 25 (2010), 53-82. https://doi.org/10.1109/MAES.2010.5546308
  19. F. Hong, Y. Zhang, Z. Zhang, M. Wei, Y. Feng, and Z. Guo, WaP: Indoor localization and tracking using WiFi-assisted particle filter, (IEEE 39th Conference on Local Computer Networks, Edmonton, Canada), 2014, pp. 210-217.
  20. Z. Nan, Z. Hongbo, F. Wenquan, and W. Zulin, A novel particle filter approach for indoor positioning by fusing WiFi and inertial sensors, Chin. J. Aeronaut. 28 (2015), 1725-1734. https://doi.org/10.1016/j.cja.2015.09.009
  21. C. Gentner, E. Munoz, M. Khider, E. Staudinger, S. Sand, and A. Dammann, Particle filter based positioning with 3GPP-LTE in indoor environments, (Proceedings of IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA), 2012, pp. 301-308.
  22. W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, Deep neural networks for wireless localization in indoor and outdoor environments, Neurocomputing. 194 (2016), 279-287. https://doi.org/10.1016/j.neucom.2016.02.055
  23. X. Ye, X. Yin, X. Cai, A. Perez Yuste, and H. Xu, Neural-network-assisted UE localization using radio-channel fingerprints in LTE networks, IEEE Access. 5 (2017), 12071-12087. https://doi.org/10.1109/ACCESS.2017.2712131
  24. Y. Li, Z. Gao, Z. He, Y. Zhuang, A. Radi, R. Chen, and N. ElSheimy, Wireless fingerprinting uncertainty prediction based on machine learning, Sensors. 19 (2019), 324.
  25. D. Li, Y. Lei, and H. Zhang, A novel outdoor positioning technique using LTE network fingerprints, Sensors. 20 (2020), 1691. https://doi.org/10.3390/s20061691
  26. G. B. Tarekegn, R.-T. Juang, H.-P. Lin, A. B. Adege, and Y. Y. Munaye, DFOPS: Deep-learning-based fingerprinting outdoor positioning scheme in hybrid networks, IEEE Internet Things J. 8 (2021), 3717-3729. https://doi.org/10.1109/JIOT.2020.3024845
  27. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, (Proceedings of Advances in Neural Information Processing Systems, Montreal, Canada), 2014, pp. 2672-2680.
  28. D. Jin, Overview of generative model, generative adversarial networks, Commun. Korean Inst. Inf. Sci. Eng. 36 (2018), no. 2, 18-24.
  29. M. Ji, J. Jeon, and Y. Cho, A positioning DB generation algorithm applying generative adversarial learning method of wireless communication signals, J. Position. Navig. Timing. 9 (2020), 151-156.
  30. Alliance for Telecommunications Industry Solutions (ATIS), High level requirements for accuracy testing methodologies, ATIS-0500001, Nov. (2011).
  31. Alliance for Telecommunications Industry Solutions (ATIS), Approaches to wireless E9-1-1 indoor location performance testing, ATIS-0500013, Feb. (2010).
  32. Alliance for Telecommunications Industry Solutions (ATIS), Recommendations for establishing wide scale indoor location performance, ATIS-0500027, May (2015).