DOI QR코드

DOI QR Code

Analysis of Acetone Absorption Spectra Using Off-axis Integrated Cavity Output Spectroscopy for a Real-time Breath Test

  • Lim Lee (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Yonghee Kim (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Byung Jae Chun (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Taek-Soo Kim (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Seung-Kyu Park (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Kwang-Hoon Ko (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Ki-Hee Song (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Hyunmin Park (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
  • Received : 2023.08.11
  • Accepted : 2023.09.27
  • Published : 2023.12.25

Abstract

We analyzed the absorption spectra of acetone in the 3.37 ㎛ mid-infrared range using the off-axis integrated cavity output spectroscopy technique to develop a real-time, in-line breath analysis device. The linear relationship between acetone concentration and absorption increase was confirmed as 0.32%/ppm, indicating that the developed device allows for a quantitative analysis of acetone concentration in exhaled breath. To further confirm the feasibility of using our device for breath analysis, we measured the acetone concentration of human breath samples at the sub-ppm level.

Keywords

Acknowledgement

This work was supported by the KAERI Institutional Program (Project No. 524430-23).

References

  1. L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography," Proc. Natl. Acad. Sci. USA 68, 2374-2376 (1971). https://doi.org/10.1073/pnas.68.10.2374
  2. B. Henderson, A. Khodabakhsh, M. Metsala, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te L. Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristesc, "Laser spectroscopy for breath analysis: Towards clinical implementation," Appl. Phys. B. 124, 161 (2018).
  3. M. Phillips, R. N. Cataneo, A. Chaturvedi, P. D. Kaplan, M. Libardoni, M. Mundada, U. Patel, and X. Zhang, "Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry," Plos ONE 8, e75274 (2013).
  4. M. Basanta, B. Ibrahim, R. Dockry, D. Douce, M. Morris, D. Singh, A. Woodcock, and S. J. Fowler, "Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: A cross-sectional study," Respir. Res. 13, 72 (2012).
  5. R. Schnabel, R. Fijten, A. Smolinska, J. Dallinga, M. L. Boumans, E. Stobberingh, A. Boots, P. Roekaerts, D. Bergmans, and F. J. van Schooten, "Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia," Sci. Rep. 5, 17179 (2015).
  6. Bedfont Scientific Ltd., "GastroCH4ECK Gastrolyzer," (Bedfont Scientific), http://www.gastrolyzer.com/gastroch4eck (Accessed Date : Aug. 10, 2023).
  7. T. P. J. Blaikie, J. Couper, G. Hancock, P. L. Hurst, R. Peverall, G. Richmond, G. A. D. Ritchie, D. Taylor, and K. Valentine, "Portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy," Anal. Chem. 88, 11016-11021 (2016). https://doi.org/10.1021/acs.analchem.6b02837
  8. R. Selvaraj, N. J. Vasa, S. M. S. Nagendra, and B. Mizaikoff, "Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics," Molecules 25, 2227 (2020).
  9. Y. A. Barhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004). https://doi.org/10.1364/AO.43.002257
  10. G. S. Engel, W. S. Drisdell, F. N. Keutsch, F. J. Moyer, and J. G. Anderson, "Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 ㎛: New sensitivity limits for absorption measurements in passive optical cavities," Appl. Opt. 45, 9221-9229 (2006). https://doi.org/10.1364/AO.45.009221
  11. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). https://doi.org/10.1063/1.1139895
  12. T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, "Detection of disease markers in human breath with laser absorption spectroscopy," Opto-Electron. Rev. 24, 82-94 (2016).
  13. Harvard-Smithsonian Center for Astrophysics, V. E. Zuev Insitute of Atmosperic Optics, and National Research Tomsk State University, "HITRAN on the Web," (HITRAN on the Web), http://hitran.iao.ru (Accessed Date: Aug. 10, 2023).
  14. E. J. Moyer, D. S. Sayres, G. S. Eengel, J. M. st. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B 92, 467-474 (2008). https://doi.org/10.1007/s00340-008-3137-9
  15. C. Wang and P. Sahay, "Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits," Sensors 9, 8230-8262 (2009). https://doi.org/10.3390/s91008230