Acknowledgement
This work was supported by the KAERI Institutional Program (Project No. 524430-23).
References
- L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography," Proc. Natl. Acad. Sci. USA 68, 2374-2376 (1971). https://doi.org/10.1073/pnas.68.10.2374
- B. Henderson, A. Khodabakhsh, M. Metsala, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te L. Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristesc, "Laser spectroscopy for breath analysis: Towards clinical implementation," Appl. Phys. B. 124, 161 (2018).
- M. Phillips, R. N. Cataneo, A. Chaturvedi, P. D. Kaplan, M. Libardoni, M. Mundada, U. Patel, and X. Zhang, "Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry," Plos ONE 8, e75274 (2013).
- M. Basanta, B. Ibrahim, R. Dockry, D. Douce, M. Morris, D. Singh, A. Woodcock, and S. J. Fowler, "Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: A cross-sectional study," Respir. Res. 13, 72 (2012).
- R. Schnabel, R. Fijten, A. Smolinska, J. Dallinga, M. L. Boumans, E. Stobberingh, A. Boots, P. Roekaerts, D. Bergmans, and F. J. van Schooten, "Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia," Sci. Rep. 5, 17179 (2015).
- Bedfont Scientific Ltd., "GastroCH4ECK Gastrolyzer," (Bedfont Scientific), http://www.gastrolyzer.com/gastroch4eck (Accessed Date : Aug. 10, 2023).
- T. P. J. Blaikie, J. Couper, G. Hancock, P. L. Hurst, R. Peverall, G. Richmond, G. A. D. Ritchie, D. Taylor, and K. Valentine, "Portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy," Anal. Chem. 88, 11016-11021 (2016). https://doi.org/10.1021/acs.analchem.6b02837
- R. Selvaraj, N. J. Vasa, S. M. S. Nagendra, and B. Mizaikoff, "Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics," Molecules 25, 2227 (2020).
- Y. A. Barhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004). https://doi.org/10.1364/AO.43.002257
- G. S. Engel, W. S. Drisdell, F. N. Keutsch, F. J. Moyer, and J. G. Anderson, "Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 ㎛: New sensitivity limits for absorption measurements in passive optical cavities," Appl. Opt. 45, 9221-9229 (2006). https://doi.org/10.1364/AO.45.009221
- A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). https://doi.org/10.1063/1.1139895
- T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, "Detection of disease markers in human breath with laser absorption spectroscopy," Opto-Electron. Rev. 24, 82-94 (2016).
- Harvard-Smithsonian Center for Astrophysics, V. E. Zuev Insitute of Atmosperic Optics, and National Research Tomsk State University, "HITRAN on the Web," (HITRAN on the Web), http://hitran.iao.ru (Accessed Date: Aug. 10, 2023).
- E. J. Moyer, D. S. Sayres, G. S. Eengel, J. M. st. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B 92, 467-474 (2008). https://doi.org/10.1007/s00340-008-3137-9
- C. Wang and P. Sahay, "Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits," Sensors 9, 8230-8262 (2009). https://doi.org/10.3390/s91008230