DOI QR코드

DOI QR Code

Volumetric 3D Display: Features and Classification

  • Joonku Hahn (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Woonchan Moon (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Hosung Jeon (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Minwoo Jung (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Seongju Lee (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Gunhee Lee (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Muhan Choi (School of Electronic and Electrical Engineering, Kyungpook National University)
  • Received : 2023.11.06
  • Accepted : 2023.11.29
  • Published : 2023.12.25

Abstract

Volumetric 3D displays generate voxels to enable users to watch three-dimensional virtual objects from various angles, and they have a significant advantage over other types of 3D displays in terms of realism and the absence of vergence-accommodation conflict (VAC). By virtue of these advantages, various volumetric 3D display technologies incorporating novel approaches have been introduced competitively. As a result, the conventional classification criteria for volumetric 3D technology often fall short in categorizing these innovative methods. In this study, we present an improved classification framework capable of accommodating these new technologies. We expect that a new classification may offer some intuition to identify areas of technical deficiency and contribute to improving the technology.

Keywords

Acknowledgement

This work was supported by Alchemist Project grant funded by Korea Evaluation Institute of Industrial Technology (KEIT) & the Korea Government (MOTIE) (Project No. 1415179744, 20019169).

References

  1. G. E. Favalora, "Volumetric 3D displays and application infrastructure," Computer 38, 37-44 (2005). https://doi.org/10.1109/MC.2005.276
  2. K. Langhans, D. Bezecny, D. Homann, C. Vogt, C. Blohm, and K.-H. Scharschmidt, "New portable FELIX 3D display," Proc. SPIE 3296, 204-216 (1998).
  3. B. G. Blundell and A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley-IEEE Press, USA, 2000), pp. 12-16.
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three color, solid-state three-dimensional display," Science 273, 1185-1189 (1996). https://doi.org/10.1126/science.273.5279.1185
  5. D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, "Volumetric displays: Turning 3-D inside-out," Opt. Photonics News 29, 26-33 (2018).
  6. T. Yendo, N. Kawakami, and S. Tachi, "Seelinder: The cylindrical light field display," in Proc. ACM SIGGRAPH 2005 emerging technologies (Los Angeles, CA, USA, Jul. 31-Aug. 4, 2005), p. 16-es.
  7. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, "An interactive 360° light field display," in Proc. ACM SIGGRAPH emerging technologies (San Diego, CA, USA, Aug. 5-9, 2007), p. 13-es.
  8. I. Rakkolainen and K. Palovuori, "Laser scanning for the interactive walk-through fogScreen," in Proc. 12th Virtual Reality Software and Technology (VRST) (Monterey, CA, USA, Nov. 7-9, 2005), pp. 224-226.
  9. H. Kim, J. Hahn, and B. Lee, "Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays," Opt. Express 17, 6389-6396 (2009). https://doi.org/10.1364/OE.17.006389
  10. "Procedure for measuring size and color of the voxel of color hologram," Telecommunications Technology Association, TTAK.KO-10.1022 (2017).
  11. J. Song, D. Heo, and J. Hahn, "Wide-angle voxel measurement method for 3D display using parabolic mirror and fisheye lens," in Proc. 32nd Optical Society of Korea (OSK) Winter Annual Meeting (Online Virtual Conference, Feb. 17-19, 2021), paper W2C-III-5.
  12. Y. Lim, K. Hong, H. Kim, H. E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, "360-degree tabletop electronic holographic display," Opt. Express 24, 24999-25009 (2016). https://doi.org/10.1364/OE.24.024999
  13. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, "100-million-voxel volumetric display," Proc. SPIE 4712, 300-312 (2002).
  14. J. Wu, C. Yan, X. Xia, J. Hou, H. Li, X. Liu, and W. Zheng, "44.2: An analysis of image uniformity of three-dimensional image based on rotating LED array volumetric display system," SID Symp. Dig. Tech. Pap. 41, 657-660 (2010).
  15. S. F. Keane, A. Jackson, G. F. Smith, W. J. Tamblyn, and K. Silverman, "Volumetric 3D display," U.S. patent 10401636B2 (2019).
  16. A. Sullivan, "LP-1: Late-news poster: The DepthCubeTM solid-state multi-planar volumetric display," SID Symp. Dig. Tech. Pap. 33, 354-355 (2002).
  17. H. Jeon, H. Kim, and J. Hahn, "360-degree cylindrical directional display," in Proc. 15th International Meeting on Information Display (IMID) (EXCO, Daegu, Korea, Aug. 18-21, 2015), paper 60-3.
  18. M. Park, H. Jeon, D. Heo, S. Lim, and J. Hahn, "360-degree mixed reality volumetric display using an asymmetric diffusive holographic optical element," Opt. Express 30, 47375-47387 (2022). https://doi.org/10.1364/OE.476965
  19. T. Nakamura, Y. Imai, Y. Yoshimizu, K. Kuramoto, N. Kato, H. Suzuki, Y. Nakahata, and K. Nomoto, "36-1: 360-degree transparent light field display with highly-directional holographic screens for fully volumetric 3D video experience," SID Symp. Dig. Tech. Pap. 54, 514-517 (2023).
  20. S. Yoshida, "fVisiOn: Glasses-free tabletop 3-D display to provide virtual 3D media naturally alongside real media," Proc. SPIE 8384, 838411 (2012).
  21. Y. Takaki and S. Uchida, "Table screen 360-degree three-dimensional display using a small array of high-speed projectors," Opt. Express 20, 8848-8861 (2012). https://doi.org/10.1364/OE.20.008848
  22. K. Kim, W. Moon, Y. Im, H. Kim, and J. Hahn, "View-sequential 360-degree table-top display with digital micromirror device," in Proc. 14th International Meeting on Information Display (IMID) (EXCO, Deagu, Korea, Aug. 26-29, 2014), paper 1-91.
  23. D. Heo, H. Jeon, S. Lim, and J. Hahn, "A wide-field-of-view table-ornament display using electronic holography," Curr. Opt. Photonics 7, 183-190 (2023).
  24. H. Kimura, T. Uchiyama, and H. Yoshikawa, "Laser produced 3D display in the air," in Proc. ACM SIGGRAPH 2006 emerging technologies (Boston, MA, USA, Jul. 30-Aug. 3, 2006), p. 20-es.
  25. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, "Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields," ACM Trans. Graph. 35, 17 (2016).
  26. K. Kumagai, S. Hasegawa, and Y. Hayasaki, "Volumetric bubble display," Optica 4, 298-302 (2017). https://doi.org/10.1364/OPTICA.4.000298
  27. K. Kumagai, T. Chiba, and Y. Hayasaki, "Volumetric bubble display with a gold-nanoparticle-containing glycerin screen," Opt. Express 28, 33911-33920 (2020). https://doi.org/10.1364/OE.405297
  28. B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, "A volumetric full-color display realized by frequency up-conversion of a transparent composite incorporating dispersed nonlinear optical crystals," NPG Asia Mater. 9, e394 (2017).
  29. K. R. Mun, J. Kyhm, J. Y. Lee, S. Shin, Y. Zhu, G. Kang, D. Kim, R. Deng, and H. S. Jang, "Elemental-migration-assisted full-color-tunable up-conversion nanoparticles for video-rate three-dimensional volumetric displays," Nano Lett. 23, 3014-3022 (2023). https://doi.org/10.1021/acs.nanolett.3c00397
  30. R. Hirayama, D. M. Plasencia, N. Masuda, and S. Subramanian, "A volumetric display for visual, tactile and audio presentation using acoustic trapping," Nature 575, 320-323 (2019). https://doi.org/10.1038/s41586-019-1739-5
  31. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, "A photophoretic-trap volumetric display," Nature 553, 486-490 (2018). https://doi.org/10.1038/nature25176
  32. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, "Occlusion-capable multiview volumetric three-dimensional display," Appl. Opt. 46, 1244-1250 (2007). https://doi.org/10.1364/AO.46.001244
  33. C. Lee, S. DiVerdi, and T. Hollerer, "Depth-fused 3-D imagery on an immaterial display," IEEE Trans. Vis. Comput. Graph. 15, 20-33 (2009). https://doi.org/10.1109/TVCG.2008.83
  34. A. Yagi, M. Imura, Y. Kuroda, and O. Oshiro, "360-degree fog projection interactive display," in Proc. ACM SIGGRAPH Asia 2011 emerging technologies (Hong Kong, China, Dec. 12-15, 2011), Article no. 19.
  35. H. Jeon, S. Lim, M. Jung, J. Yoon, C. Park, J. Seok, J. Yu, and J. Hahn, "Crosstalk reduction in tabletop multiview display with fog screen," ETRI J. 44, 686-694 (2022). https://doi.org/10.4218/etrij.2021-0164