DOI QR코드

DOI QR Code

Numerical formulation solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Received : 2023.03.31
  • Accepted : 2023.11.16
  • Published : 2023.12.25

Abstract

Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-OfFreedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of CONACYT (Consejo Nacional de Ciencia y Tecnologia of Mexico) which funded the project PDPN/2015-1187 as well as the Arturo Suarez Suarez's doctoral scholarship.

References

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Couple. Syst. Mech., 9(5), 473-498. https://doi.org/10.12989/csm.2020.9.5.473.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. https://doi.org/10.12989/csm.2021.10.4.299.
  3. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Couple. Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  4. Akbas, S.D. (2020), "Dynamic analysis of a laminated composite beam under harmonic load", Couple. Syst. Mech., 9(6), 563-573. https://doi.org/10.12989/csm.2020.9.6.563.
  5. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  6. Andrews, G.E., Askey, R. and Roy, R. (1987), Encyclopedia of Mathematics and its Applications; Special Functions, Cambridge University Press, Cambridge, U.K.
  7. Bideci, A., Bideci, O .S., Oymael, S., Gultekin, A.H. and Yildirim, H. (2017), "Lightweight aggregates coated with colemanite", Comput. Concrete, 19(5), 451-455. https://doi.org/10.12989/cac.2017.19.5.451.
  8. Camanho, P.P., Turon, A. and Costa, J. (2008), "17-Delamination propagation under cyclic loading", Delamination Behaviour of Composites, Woodhead Publishing Series in Composites Science and Engineering, 485-513.
  9. Ciavarella, M., Paggi, M. and Carpinteri, A. (2008), "One, no one, and one hundred thousand crack propagation laws: A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth", J. Mech. Phys. Solid., 56(12), 3416-3432. https://doi.org/10.1016/j.jmps.2008.09.002.
  10. Cimellaro, G.P. (2013), "11-Resilience-based design (RBD) modelling of civil infrastructure to assess seismic hazards", Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems, 91, 268-303. https://doi.org/10.1533/9780857098986.2.268
  11. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  12. De Borst, R. and Remmers, J.C. (2006), "Computational modelling of delamination", Compos. Sci. Technol., 66(6), 713-722. https://doi.org/10.1016/j.compscitech.2004.12.025
  13. Ding, W. (1999), "Delamination analysis of composite laminates", Ph.D. Dissertation, University of Toronto, Canada.
  14. Dolbow, J. (1999), "An extended finite element method with discontinuous enrichment for applied mechanics", Ph.D. Dissertation, Northwestern University, Evanston, IL., USA.
  15. Dominguez, N. (2005), "Etude de la liaison acier-beton: de la modelisation du phenomene a la formulation d'un element fini enrichi Beton Arme", Ph.D. Dissertation, Ecole Normale Superieure de Cachan, France.
  16. Dominguez, N. and Ibrahimbegovic, A. (2012), "A non-linear thermodynamical model for steel-concrete bonding", Comput. Struct., 29(45), 29-45. https://doi.org/10.1016/j.compstruc.2012.04.005.
  17. Dominguez, N., Fernandez, M.A. and Ibrahimbegovic, A. (2010), "Enhanced solid element for modelling of reinforced concrete structures with bond-slip", Comput. Concrete, 7(4), 347-364. https://doi.org/10.12989/cac.2010.7.4.347.
  18. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.P.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.
  19. Gobierno, del D.F. (2017), "Normas tecnicas complementarias para el diseno y construccion de estructuras de acero", Reglamento de Construcciones del Distrito Federal, Ciudad de Mexico, Mexico.
  20. Hossain, K.M. and Olufemi, O.O. (2004), "Computational optimisation of a concrete model to simulate membrane action in RC slabs", Comput. Concrete, 1(3), 325-354. https://doi.org/10.12989/cac.2004.1.3.325.
  21. Hughes, T.J.R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice-Hall International Editions, New Jersey, USA.
  22. Ibrahimbegovic, A. (2010), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Dordrecht, Heidelberg, London, New York.
  23. Ibrahimbegovic, A. and Nava, R.A.M. (2021), "Heterogeneities and material-scales providing physicallybased damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3) 201-216, https://doi.org/10.12989/csm.2021.10.3.201.
  24. Iglesias, J., Robles, F.V., De la Cera, J.A. and Gonzalez, O. (1985), "Reparacion de estructuras de concreto y mamposteria", Departamento de Ciencias e Ingenieria, UAM, Ciudad de Mexico, Mexico.
  25. Kim, S.H. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416. https://doi.org/10.12989/cac.2004.1.4.401.
  26. Lee, C., Bonacci, J.F. and Thomas, M.D.A. (2000), "Accelerated corrosion and repair of reinforced concrete columns using carbon fiber reinforced polymer sheets", Can. J. Civil Eng., 211, 941-948. https://doi.org/10.1139/l00-030.
  27. Limaiem, M., Ghorbel, E. and Limam, O. (2019), "Comparative experimental study of concrete reparation with carbon epoxy & bio-resourced composites", Constr. Build. Mater., 201, 312-323. https://doi.org/10.1016/j.conbuildmat.2019.03.137.
  28. MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design, Prentice Hall Upper Saddle River, NJ, U.S.A.
  29. Matthew, D.J. and Mehrdad, S. (2020), "Building performance for earthquake resilience", Eng. Struct., 210, 110371. https://doi.org/10.1016/j.engstruct.2020.110371.
  30. Mejia-Nava, R.A., Ibrahimbegovic, A., Dominguez-Ramirez, N. and Flores-Mendez, E. (2021), "Viscoelastic behavior of concrete structures subject to earthquake", Couple. Syst. Mech., 10(3) 263-280, https://doi.org/10.12989/csm.2021.10.3.263.
  31. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139(1-4), 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0.
  32. Moes, N., Dolbow, J. and Belytschko, T. (2012), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  33. Mohebi, B., Hosseinifard, S.M. and Bastami, M. (2016), "Plastic hinge characteristics of RC rectangular columns with Fiber Reinforced Polymer (FRP)", Comput. Concrete, 18(4), 853-876. https://doi.org/10.12989/cac.2016.18.4.853.
  34. Nasser, H., Van-Steen, Ch., Vandewalle, L. and Verstrynge, E. (2021), "An experimental assessment of corrosion damage and bending capacity reduction of singly reinforced concrete beams subjected to accelerated corrosion", Constr. Build. Mater., 286, 122773. https://doi.org/10.1016/j.conbuildmat.2021.122773.
  35. Park, J.G., Lee, K.M., Shin, H.M. and Park, Y.J. (2007), "Nonlinear analysis of RC beams strengthened by externally bonded plates", Comput. Concrete, 4(2), 119-134. https://doi.org/10.12989/cac.2007.4.2.119.
  36. Rezaiee-Pajand, M. and Karimipour, A. (2020), "Two rectangular elements based on analytical functions", Adv. Comput. Des., 5(2), 147-175. https://doi.org/10.12989/acd.2020.5.2.147.
  37. Shaw, I.D. and Andrawes, B. (2017), "Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders", Adv. Comput. Des., 1(2), 147-168. https://doi.org/10.12989/acd.2017.1.2.147.
  38. Siu, W.H. and Su, R.K.L. (2011), "Analysis of side-plated reinforced concrete beams with partial interaction", Comput. Concrete, 8(1), 71-96. https://doi.org/10.12989/cac.2011.8.1.071.
  39. Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation", Int. J. Solid. Struct., 40(26), 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002.
  40. Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2020.10.5.393.
  41. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresse", Couple. Syst. Mech., 10(2), 161-184. https://doi.org/10.12989/csm.2021.10.2.161.
  42. Turon, A., Camanho, P.P., Costa, J. and Davila, C.G. (2006), "A damage model for the simulation of delamination in advanced composites under variable-mode loading", Mech. Mater., 38(11), 1072-1089. https://doi.org/10.1016/j.mechmat.2005.10.003.
  43. Xiongfei, L. and Yue, L. (2018), "Experimental study of seismic behavior of partially corrosion-damaged reinforced concrete columns strengthened with FRP composites with large deformability", Constr. Build. Mater., 191, 1071-1081. https://doi.org/10.1016/j.conbuildmat.2018.10.072.
  44. Xiongfei, L. and Yue, L. (2019), "Static bearing capacity of partially corrosion-damaged reinforced concrete structures strengthened with PET FRP composites", Constr. Build. Mater., 211, 33-43. https://doi.org/10.1016/j.conbuildmat.2019.03.218.
  45. Yang, H., Song, H. and Zhang, S. (2015), "Experimental investigation of the behavior of aramid fiber reinforced polymer confined concrete subjected to high strain-rate compression", Constr. Build. Mater., 95, 143-151. https://doi.org/10.1016/j.conbuildmat.2015.07.084.
  46. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2006), The Finite Element Method-It's Basis and Fundamentals, Butterworth-Heinemann.