DOI QR코드

DOI QR Code

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha (Department of Civil Engineering, Alagappa Chettiar Government College of Engineering &Technology) ;
  • G. Venkatesan (Department of Civil Engineering, University College of Engineering Tiruchirapalli (BIT Campus), Anna University) ;
  • Siva Avudaiappan (Departamento de Ciencias de la Construccion, Facultad de Ciencias de la Construccion y Ordenamiento Territorial, Universidad Tecnologica Metropolitana) ;
  • Chunwei Zhang (Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology)
  • Received : 2022.12.12
  • Accepted : 2023.11.07
  • Published : 2023.12.10

Abstract

The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Keywords

References

  1. Abdul Ghani, K.D. and Hamid, N.H. (2013), "Comparing the seismic performance of beam-column joints with and without SFRC when subjected to cyclic loading", Adv. Mater. Res., 626, 85-89. https://doi.org/10.4028/www.scientific.net/AMR.626.85.
  2. Agarwal, P. and Shrikhande, M. (2010), Earthquake Resistant Design of Structures, PHI, New Delhi, India.
  3. Ahmad, J., Majdi, A., Deifalla, A.F., Ben Kahla, N. and ElShorbagy, M.A. (2022), "Concrete reinforced with Sisal Fibers (SSF), overview of mechanical and physical properties", Crystal., 12(7), 952. https://doi.org/10.3390/cryst12070952.
  4. Bekele, A.E., Lemu, H.G. and Jiru, M.G. (2022), "Experimental study of physical, chemical and mechanical properties of enset and sisal fibers", Polym. Test., 106, 107453. https://doi.org/10.1016/j.polymertesting.2021.107453.
  5. Bharti, R., Chidambaram, R.S. and Kwatra, N. (2017), "Influence of fiber reinforced concrete on plastic behavior on exterior beam-column joint under cyclic loading", Procedia Eng., 173, 1122-1129. https://doi.org/10.1016/j.proeng.2016.12.077.
  6. Chidambaram, R.S. and Agarwal, P. (2015), "Seismic behavior of hybrid fiber reinforced cementitious composite beam-column joints", Mater. Des., 86, 771-781. https://doi.org/10.1016/j.matdes.2015.07.164.
  7. de Souza Castoldi, R., de Souza, L.M.S. and de Andrade Silva, F. (2019a), "Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes", Constr. Build. Mater., 211, 617-628. https://doi.org/10.1016/j.conbuildmat.2019.03.282.
  8. Ganesan, N., Indira, P.V. and Abraham, R. (2007), "Steel fibre reinforced high performance concrete beam-column joints subjected to cyclic loading", J. Earthq. Technol., 44(3-4), 445-456.
  9. Ganesan, N., Indira, P.V. and Sabeena, M.V. (2014), "Behaviour of hybrid fibre reinforced concrete beam-column joints under reversed cyclic loads", Mater. Des., 54, 686-693. https://doi.org/10.1016/j.matdes.2013.08.076.
  10. Ghayeb, H.H., Sulong, N.R., Razak, H.A. and Mo, K.H. (2022), "Enhancement of seismic behaviour of precast beam-to-column joints using engineered cementitious composite", Eng. Struct., 255, 113932. https://doi.org/10.1016/j.engstruct.2022.113932.
  11. Hari, R. and Mini, K.M. (2019), "Mechanical and durability properties of sisal-Nylon 6 hybrid fibre reinforced high strength SCC", Constr. Build. Mater., 204, 479-491. https://doi.org/10.1016/j.conbuildmat.2019.01.217.
  12. Hossein Saghafi, M. and Shariatmadar, H. (2018), "Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites", Constr. Build. Mater., 180, 665-680. https://doi.org/10.1016/j.conbuildmat.2018.05.221.
  13. Hu, Y., Maeda, M., Suzuki, Y. and Jin, K. (2021), "Seismic performance of exterior R/C beam-column joint under varying axial force", Struct. Eng. Mech., 78(5), 623-635. https://doi.org/10.12989/sem.2021.78.5.623.
  14. Ismail, M.K., Abdelaleem, B.H. and Hassan, A.A. (2018), "Effect of fiber type on the behavior of cementitious composite beam-column joints under reversed cyclic loading", Constr. Build. Mater., 186, 969-977. https://doi.org/10.1016/j.conbuildmat.2018.08.024.
  15. Jin, X. and Li, Z. (2003). "Effects of mineral admixture on properties of young concrete", J. Mater. Civil Eng., 15(5), 435-442. https://doi.org/10.1061/ASCE0899-1561200315:5435.
  16. Lima, P.R., Santos, R.J., Ferreira, S.R. and Toledo Filho, R.D. (2014), "Characterization and treatment of sisal fiber residues for cement-based composite application", Engenharia Agricola, 34(5), 812-825. https://doi.org/10.1590/S0100-69162014000500002.
  17. Nadir, W., Ali, A.Y. and Kadhim, M.M. (2021), "Structural behavior of hybrid reinforced concrete beam-column joints under cyclic load: State of the art review", Case Stud. Constr. Mater., 15, e00707. https://doi.org/10.1016/j.cscm.2021.e00707.
  18. Naraganti, S.R., Pannem, R.M.R. and Putta, J. (2019), "Impact resistance of hybrid fibre reinforced concrete containing sisal fibers", Ain Shams Eng. J., 10(2), 297-305. https://doi.org/10.1016/j.asej.2018.12.004.
  19. Padanattil, A., Karingamanna, J. and Mini, K.M. (2017), "Novel hybrid composites based on glass and sisal fiber for retrofitting reinforced concrete structures", Constr. Build. Mater., 133, 146-153. https://doi.org/10.1016/j.conbuildmat.2016.12.045.
  20. Rahmdel, J.M., Vahid-Vahdattalab, F., Shafei, E. and Zirakian, T. (2021), "Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers", Struct. Eng. Mech., 77(6), 735-744. https://doi.org/10.12989/sem.2021.77.6.735
  21. Rohm, C., Novak, B., Sasmal, S., Karusala, R. and Srinivas, V. (2012), "Behaviour of fibre reinforced beam-column sub-assemblages under reversed cyclic loading", Constr. Build. Mater., 36, 319-329. https://doi.org/10.1016/j.conbuildmat.2012.04.114.
  22. Sachdeva, P., Roy, A.D. and Kwatra, N. (2021), "Behaviour of steel fibers reinforced exterior beam-column joint using headed bars under reversed cyclic loading", Struct., 33, 3929-3943. https://doi.org/10.1016/j.istruc.2021.06.074.
  23. Said, S.H. and Razak, H.A. (2016), "Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading", Constr. Build. Mater., 107, 226-234. https://doi.org/10.1016/j.conbuildmat.2016.01.001.
  24. Sanjuan, M.A. and Toledo Filho, R.D. (1998), "Effectiveness of crack control at early age on the corrosion of steel bars in low modulus sisal and coconut fibre-reinforced mortars", Cement Concrete Res., 28(4), 555-565. https://doi.org/10.1016/S0008-8846(98)00003-9.
  25. Santana, H.A., Junior, N.S.A., Ribeiro, D.V., Cilla, M.S. and Dias, C.M. (2021), "Vegetable fibers behavior in geopolymers and alkali-activated cement based matrices: A review", J. Build. Eng., 44, 103291. https://doi.org/10.1016/j.jobe.2021.103291.
  26. Shannag, M.J., Abu-Dyya, N. and Abu-Farsakh, G. (2005), "Lateral load response of high performance fiber reinforced concrete beam-column joints", Constr. Build. Mater., 19(7), 500-508. https://doi.org/10.1016/j.conbuildmat.2005.01.007.
  27. Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32(3), 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043.
  28. Suryanto, B., Tambusay, A., Suprobo, P., Bregoli, G. and Aitken, M.W. (2022), "Seismic performance of exterior beam-column joints constructed with engineered cementitious composite: Comparison with ordinary and steel fibre reinforced concrete", Aitken Eng. Struct., 250, 113377. https://doi.org/10.1016/j.engstruct.2021.113377.
  29. Toledo Filho, R. D., Joseph, K., Ghavami, K. and England, G. L. (1999), "The use of sisal fibre as reinforcement in cement based composites uso das fibras de sisal como elementos de reforco de compositos a base de cimento resumo", Revista Brasileira de Engenharia Agricola e Ambiental, 3, 245-256. https://doi.org/10.1590/1807-1929/agriambi.v3n2p245-256
  30. Vairagade, V.S. and Dhale, S.A. (2023), "Hybrid fibre reinforced concrete-A state of the art review", Hybrid Adv., 10035. https://doi.org/10.1016/j.hybadv.2023.100035.
  31. Veigas, M. G., Najimi, M. and Shafei, B. (2022), "Cementitious composites made with natural fibers: Investigation of uncoated and coated sisal fibers", Case Stud. Constr. Mater., 16, e00788. https://doi.org/10.1016/j.cscm.2021.e00788.
  32. Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A. and Thiruchitrambalam, M. (2011), "Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites", Mater. Des., 32(7), 4017-4021. https://doi.org/10.1016/j.matdes.2011.03.002.
  33. You, Z., Chen, X. and Dong, S. (2011), "Ductility and strength of hybrid fiber reinforced self-consolidating concrete beam with low reinforcement ratios", Syst. Eng. Procedia, 1, 28-34. https://doi.org/10.1016/j.sepro.2011.08.006.
  34. Zarrin, O. and Khoshnoud, H.R. (2016), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133.
  35. Zhao, X., Li, R.K. and Bai, S.L. (2014), "Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process", Compos. Part A: Appl. Sci. Manuf., 65, 169-174. https://doi.org/10.1016/j.compositesa.2014.06.017.