DOI QR코드

DOI QR Code

A new formulation of cracking in concrete structures based on lumped damage mechanics

  • Daniel V.C. Teles (Laboratory of Mathematical Modelling in Civil Engineering, Post-graduate Program in Civil Engineering, Federal University of Sergipe) ;
  • Rafael N. Cunha (Post-graduate Program in Civil Engineering, Federal University of Alagoas) ;
  • Ricardo A. Picon (Departamento de Obras Civiles y Geologia, Facultad de Ingenieria, Universidad Catolica de Temuco) ;
  • David L.N.F. Amorim (Laboratory of Mathematical Modelling in Civil Engineering, Post-graduate Program in Civil Engineering, Federal University of Sergipe) ;
  • Yongtao Bai (School of Civil Engineering, Chongqing University) ;
  • Sergio P.B. Proenca (Department of Structural Engineering, Engineering School of Sao Carlos, University of Sao Paulo) ;
  • Julio Florez-Lopez (School of Civil Engineering, Chongqing University)
  • Received : 2023.03.18
  • Accepted : 2023.11.16
  • Published : 2023.12.10

Abstract

Lumped Damage Mechanics (LDM) is a theory proposed in the late eighties, which assumes that structural collapse may be analyzed as a two-phase phenomenon. In the first (pre-localization) stage, energy dissipation is a continuous process and it may be modelled by means of the classic versions of the theory of plasticity or Continuum Damage Mechanics (CDM). The second, post-localization, phase can be modelled assuming that energy dissipation is lumped in zones of zero volume: inelastic hinges, hinge lines or localization surfaces. This paper proposes a new LDM formulation for cracking in concrete structures in tension. It also describes its numerical implementation in conventional finite element programs. The results of three numerical simulations of experimental tests reported in the literature are presented. They correspond to plain and fiber-reinforced concrete specimens. A fourth simulation describes also the experimental results of a new test using the digital image correlation technique. These numerical simulations are also compared with the ones obtained using conventional Cohesive Fracture Mechanics (CFM). It is then shown that LDM conserves the advantages of both, CDM and CFM, while overcoming their drawbacks.

Keywords

Acknowledgement

The authors acknowledge the Laboratory of Mathematical Modelling in Civil Engineering (LAMEC) of the Post-graduate Program in Civil Engineering of the Federal University of Sergipe (PROEC/UFS) and the Laboratory of Building Materials and Structures (LAMCE/UFS) for the physical support during the development of this work. The first and the second authors acknowledge CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) for the financial support of their M.Sc. and D.Sc. studies, respectively. The first and the fourth author acknowledge the PROAP/CAPES grants 23113.058556/2019-31, 23113.064080/2019-78, 23113.025644/2020-58 and 23113.031287/2022-78 provided by the PROEC/UFS. The fourth author acknowledges CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), Brazil, for the grant 436523/2018-3 (Chamada Universal CNPq MCTIC).

References

  1. Abaqus (2011), Abaqus 6.11, Dassault Systemes Simulia Corporation, Providence, RI, USA.
  2. Abbas, M., Bary, B. and Jason, L. (2023), "A 3D mesoscopic frictional cohesive zone model for the steel-concrete interface", Int. J. Mech. Sci., 237, 107819. https://doi.org/10.1016/j.ijmecsci.2022.107819.
  3. Alfano, G. and Sacco, E. (2006), "Combining interface damage and friction in a cohesive-zone model", Int. J. Numer. Meth. Eng., 68(5), 542-582. https://doi.org/10.1002/nme.1728.
  4. Amorim, D.L.N.F., Piedade Neto, D., Proenca, S.P.B. and Florez-Lopez, J. (2018), "The extended lumped damage mechanics: A new formulation for the analysis of softening with FE size-independence", Mech. Res. Commun., 91, 13-18. https://doi.org/10.1016/j.mechrescom.2018.05.001.
  5. Araujo, M.V.O., Lages, E.N. and Cavalcante, M.A.A. (2020), "Checkerboard free topology optimization for compliance minimization applying the finite-volume theory", Mech. Res. Commun., 108, 103581. https://doi.org/10.1016/j.mechrescom.2020.103581.
  6. Bai, Y., Guan, S. and Florez-Lopez, J. (2017), "Development of a damage model for assessing fracture failure of steel beam to-column connections subjected to extremely low-cycle fatigue", Eng. Fail. Anal., 82, 823-834. https://doi.org/10.1016/j.engfailanal.2017.07.032.
  7. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
  8. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177. https://doi.org/10.1007/BF02486267.
  9. Bazant, Z.P. and Pijaudier-Cabot, G. (1988), "Nonlocal continum damage, localization instabilities and convergence", J. Eng. Mech., 55, 287-293. https://doi.org/10.1115/1.3173674.
  10. Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D. and Russo, A. (2013), "Basic principles of virtual element methods", Math. Model. Meth. Appl. Sci., 23(01), 199-214. https://doi.org/10.1142/S0218202512500492.
  11. Beirao da Veiga, L., Brezzi, F., Marini, L.D. and Russo, A. (2014), "The hitchhiker's guide to the virtual element method", Math. Model. Meth. Appl. Sci., 24(08), 1541-1573. https://doi.org/10.1142/S021820251440003X.
  12. Benallal, A., Billardon, R. and Geymonat, G. (1993), Bifurcation and Localization in Rate-Independent Materials. Some General Considerations. In: Nguyen QS, editor. Bifurcation and Stability of Dissipative Systems. Vienna: Springer-Verlag. 1-44. https://doi.org/10.1007/978-3-7091-2712-4_1.
  13. Benedetti, L., Cervera, M. and Chiumenti, M. (2016). "High-fidelity prediction of crack formation in 2D and 3D pullout tests", Comput. Struct., 172, 93-109. https://doi.org/10.1016/j.compstruc.2016.05.001.
  14. Benvenuti, E. and Orlando, N. (2021), "Modeling mixed mode cracking in concrete through a regularized extended finite element formulation considering aggregate interlock", Eng. Fract. Mech., 258, 108102. https://doi.org/10.1016/j.engfracmech.2021.108102.
  15. Brunig, M. and Michalski, A. (2017), "A stress-state-dependent continuum damage model for concrete based on irreversible thermodynamics", Int J Plast., 90, 31-43. https://doi.org/10.1016/j.ijplas.2016.12.002.
  16. Caratelli, A., Meda, A., Rinaldi, Z. and Romualdi, P. (2011), "Structural behaviour of precast tunnel segments in fiber reinforced concrete", Tunnel. Undergr. Sp. Tech., 26(2), 284-291. https://doi.org/10.1016/j.tust.2010.10.003.
  17. Cavalcante, M.A. and Pindera, M.J. (2016), "Generalized FVDAM theory for elastic-plastic periodic materials", Int. J. Plast., 77, 90-117. https://doi.org/10.1016/j.ijplas.2015.09.010.
  18. Cervera, M. and Chiumenti, M. (2006), "Smeared crack approach: back to the original track", Int. J. Numer. Anal. Meth. Geomech., 30(12), 1173-1199. https://doi.org/10.1002/nag.518.
  19. Cervera, M., Barbat, G.B., Chiumenti, M. and Wu, J.Y. (2022), "A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking", Arch. Comput. Meth. Eng., 29, 1009-1083. https://doi.org/10.1007/s11831-021-09604-8.
  20. Cipollina, A., Lopez-Inojosa, A. and Florez-Lopez, J. (1995), "A simplified damage mechanics approach to nonlinear analysis of frames", Comput. Struct., 54(6), 1113-1126. https://doi.org/10.1016/0045-7949(94)00394-I.
  21. Comi, C. (1999), "Computational modelling of gradient-enhanced damage in quasi-brittle materials", Mech. Cohes. Frict. Mater., 4, 17-36. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<17::AID-CFM55>3.0.CO;2-6.
  22. Comi, C., Mariani, S. and Perego, U. (2007), "An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation", Int. J. Numer. Anal. Meth. Geomech., 31(2), 213-238. https://doi.org/10.1002/nag.537.
  23. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
  24. Dvorkin, E., Cuitino, A. and Gioia, G. (1990), "Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distorsions", Int. J. Numer. Meth. Eng., 30, 541-564. https://doi.org/10.1002/nme.1620300311.
  25. Elmo, D. and Mitelman, A. (2021), "Modeling concrete fracturing using a hybrid finite-discrete element method", Comput. Concrete, 27(4), 297-304. https://doi.org/10.12989/cac.2021.27.4.297.
  26. Florez-Lopez, J., Marante, M.E. and Picon, R. (2015), Fracture and Damage Mechanics for Structural Engineering of Frames: State-of-the-Art Industrial Application, IGI-GLOBAL, Hershey, Pennsylvania, USA.
  27. Fraeijs de Veubeke, B. (1965), Displacement and Equilibrium Models in the Finite Element Method, Wiley, London.
  28. Fu, J., Sarfarazi, V., Haeri, H., Marji, M.F. and Guo, M. (2022), "Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch", Struct. Eng. Mech., 81(1), 81-91. https://doi.org/10.12989/sem.2022.81.1.081.
  29. Geelen, R.J., Liu, Y., Dolbow, J.E. and Rodriguez-Ferran, A. (2018), "An optimization-based phase-field method for continuous-discontinuous crack propagation", Int. J. Numer. Meth. Eng., 116(1), 1-20. https://doi.org/10.1002/nme.5911.
  30. Geelen, R.J.M., Liu, Y., Dolbow, J.E. and Rodriguez-Ferran, A. (2018), "An optimization-based phase-field method for continuous-discontinuous crack propagation", Int. J. Numer. Meth.. Eng., 116, 1-20. https://doi.org/10.1002/nme.5911.
  31. Huang, Y.Q. and Hu, S.W. (2019), "A cohesive model for concrete mesostructure considering friction effect between cracks", Comput. Concrete, 24(1), 51-61. https://doi.org/10.12989/cac.2019.24.1.051.
  32. Kamal, M.A., Farid, A.F. and Rashed, Y.F. (2021), "Explicit boundary element modeling of nonlocal damage with Eshelby theory", Eng. Anal. Bound. Elem., 131, 64-75. https://doi.org/10.1016/j.enganabound.2021.06.014.
  33. Ke, X., Xiang, W. and Ye, C. (2022), "Mechanical properties and damage constitutive model of self-compacting rubberized concrete", Comput. Concrete, 30(4), 257-267. https://doi.org/10.12989/cac.2022.30.4.257.
  34. Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge University Press.
  35. Li, Y., Dong, S. and Pavier, M.J. (2020), "Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three point bending specimens", Struct. Eng. Mech., 76(6), 725-736. https://doi.org/10.12989/sem.2020.76.6.725.
  36. Marante, M.E. and Florez-Lopez, J. (2004), "Plastic localization revisited", J. Appl. Mech.-T ASME, l71(2), 283-285. https://doi.org/10.1115/1.1636790.
  37. Mirsalimov, V.M. and Hasanov, S.H. (2020), "A study of fracture of a fibrous composite", Struct. Eng. Mech., 73(5), 585-598. https://doi.org/10.12989/sem.2020.73.5.585.
  38. Oliver, J., Huespe, A., Pulido, M. and Chaves, E. (2002), "From continuum mechanics to fracture mechanics: The strong discontinuity approach", Eng. Fract. Mech., 69, 113-136. https://doi.org/10.1016/S0013-7944(01)00060-1.
  39. Peerlings, R., de Borst, R., Brekelmans, W. and de Vree, J. (1996), "Gradient enhanced damage for quasi brittle materials", Int. J. Numer. Meth. Eng., 39, 3391-3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D.
  40. Perdomo, M.E., Ramirez, A. and Florez-Lopez, J. (1999), "Simulation of damage in RC frames with variable axial forces", Earthq. Eng. Struct. Dyn., 28(3), 311-328. https://doi.org/10.1002/(SICI)1096-9845(199903)28:3%3C311::AID-EQE819%3E3.0.CO;2-D.
  41. Picon, R.A., Santos, D.M., Teles, D.V.C., Amorim, D.L.N.F., Zhou, X., Bai, Y., Proenca, S.P.B. and Florez-Lopez, J. (2021), "Modeling of localization using Nash variational formulations: The extended damage mechanics", Eng Fract Mech, 258, 108083. https://doi.org/10.1016/j.engfracmech.2021.108083.
  42. Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech., 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512).
  43. Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive materials", Int. J. Fract., 51, 139-157. https://doi.org/10.1007/978-94-011-3638-9_10.
  44. Rashid, Y. (1968), "Ultimate strength analysis of prestressed concrete pressure vessels", Nucl. Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6.
  45. Rice, J.R. (1976), The Localization of Plastic Deformation, Theoretical and Applied Mechanics, Ed. W.T. Koiter, North-Holland, Amsterdam.
  46. Rice, J.R. and Rudnicki, J.W. (1980), "A note on some features of the theory of localization of deformation", Int. J. Solid. Struct., 16, 597-605. https://doi.org/10.1016/0020-7683(80)90019-0.
  47. Rudnicki, J.W. and Rice, J.R. (1975), "Conditions for the localization of deformation in pressure sensitive dilatant materials", J. Mech. Phys. Solid., 23(6), 371-394. https://doi.org/10.1016/0022-5096(75)90001-0.
  48. Shashkov, M. and Steinberg, S. (1996), "Solving diffusion equations with rough coefficients in rough grids", J. Comput. Phys., 129(2), 383-405. https://doi.org/10.1006/jcph.1996.0257
  49. Shen, M., Shi, Z., Zhao, C., Zhong, X., Liu, B. and Shu, X. (2019), "2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements", Comput. Concrete, 24(3), 207-222. https://doi.org/10.12989/cac.2019.24.3.207.
  50. Shin, H.Y., Lawrence, C., Kota, K.R., Thamburaja, P., Srinivasa, A., Lacy, J.R., T.E. and Reddy, J. (2022), "Experimental, theoretical and numerical studies on plain concrete fracture in the low-strain rate regime-A state-of-the-art review", Mech. Adv. Mater. Struct., 29, 7115-7159. https://doi.org/10.1080/15376494.2021.2011501.
  51. Surmiri, A., Nayebi, A., Rokhgireh, H. and Varvani-Farahani, A. (2020), "Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading", Struct. Eng. Mech., 75(1), 101-108. https://doi.org/10.12989/sem.2020.75.1.101.
  52. Tamayo-Mas, E. and Rodriguez-Ferran, A. (2015), "A medial-axis-based model for propagating cracks in a regularised bulk", Int. J. Numer. Meth. Eng., 101(7), 489-520. https://doi.org/10.1002/nme.4757.
  53. Teles, D.V.C. (2022), "Mecanica do dano concentrado para meios bidimensionais: Formulacao para modo I com lei de dano nao linear", M.Sc. Dissertation, Universidade Federal de Sergipe, Sao Cristovao.
  54. Teles, D.V.C., Oliveira, M.C. and Amorim, D.L.N.F. (2020), "A simplified lumped damage model for reinforced concrete beams under impact loads", Eng. Struct., 205, 110070. https://doi.org/10.1016/j.engstruct.2019.110070.
  55. Toi, Y. and Hasegawa, K. (2011), "Element-size independent, elasto-plastic damage analysis of framed structures using the adaptively shifted integration technique", Comput. Struct., 89(23-24), 2162-2168. https://doi.org/10.1016/j.compstruc.2011.09.002.
  56. Toi, Y. and Lee, J.G. (2005), "Element-size independent analysis of elasto-plastic damage behaviors of framed structures", International Conference on Computational Science and Its Applications, 3483, 1055-1064.
  57. Trunk, B.G. (1999), "Einfluss der bauteilgrosse auf die bruchenergie von beton", Ph.D. Dissertation, Eidgenossische Technische Hochschule Zurich, Zurich.
  58. Upadhyaya, Y.S. and Sridhara, B.K. (2012), "Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach", Mater. Des., 35, 220-224. https://doi.org/10.1016/j.matdes.2011.09.049.
  59. Vieira, C.S. and Marques, S.P.C. (2019) "A new three-dimensional finite-volume model for evaluation of thermal conductivity of periodic multiphase composites", Int. J. Heat Mass Tran., 139, 412-424. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.031.
  60. Voyiadjis, G.Z. and Kattan, P.I. (2019), "Fundamental aspects for characterization in continuum damage mechanics", Int. J. Damage Mech., 28(2), 200-218. https://doi.org/10.1177/105678951775252.
  61. Winkler, B., Hofstetter, G. and Niederwanger, G. (2001), "Experimental verification of a constitutive model for concrete cracking", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 215(2), 75-86. https://doi.org/10.1177/146442070121500202.
  62. Wriggers, P., Rust, W.T. and Reddy, B. (2016), "A virtual element method for contact", Comput. Mech., 58, 1039-1050. https://doi.org/10.1007/s00466-016-1331-x.
  63. Wu, J.Y. and Cervera, M. (2018), "A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids", Int. J. Solid. Struct., 139-140, 250-269. https://doi.org/10.1016/j.ijsolstr.2018.02.004.
  64. Yan, J., Kong, L., Xiong, C. and Xu, G. (2023), "Damage analysis of shear mechanical behavior of pile-structural soil interface considering shear rate effect", Acta Geotech., 18, 1-15. https://doi.org/10.1007/s11440-023-01912-6.
  65. Zhang, K., Lu, F., Peng, Y. and Li, X. (2022), "A novel method for generation and prediction of crack propagation in gravity dams", Struct. Eng. Mech., 81(6), 665-675. https://doi.org/10.12989/sem.2022.81.6.665.
  66. Zhang, P., Du, C., Zhao, W. and Zhang, D. (2021), "Hydraulic fracture simulation of concrete using the SBFEM-FVM model", Struct. Eng. Mech., 80(5), 553-562. https://doi.org/10.12989/sem.2021.80.5.553.