DOI QR코드

DOI QR Code

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu (Sports Work Department, Guizhou University of Finance and Economics)
  • Received : 2022.08.09
  • Accepted : 2023.03.08
  • Published : 2023.11.25

Abstract

Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

Keywords

References

  1. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 38 (5), 4051-4072. https://doi.org/10.1007/s00366-021-01382-y.
  2. Adessina, A., Hamdaoui, M., Xu, C. and Daya, E.M. (2016), "Damping properties of bi-dimensional sandwich structures with multi-layered frequency-dependent visco-elastic cores", Compos. Struct., 154, 334-343. https://doi.org/10.1016/j.compstruct.2016.07.056
  3. Alibeigloo, A. (2011), "Free vibration analysis of nano-plate using three-dimensional theory of elasticity", Acta. Mech., 222(1), 149-159. https://doi.org/10.1007/s00707-011-0518-7
  4. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  5. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  6. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  7. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  8. Arefi, M. and Rahimi, G.H. (2012b), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary non-homogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  9. Arefi, M. and Rahimi, G.H. (2012c), "Comprehensive thermos-elastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  10. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  11. Khoshgoftar, M., Rahimi, M.J. and Arefi, G.H. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  12. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci, 6 (27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  13. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  14. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580
  15. Arefi, M. Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. & Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279
  16. Arefi, M. and Zenkour, A.M. (2016) "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652
  17. Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  18. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413.https://doi.org/10.1177/1045389X17689930
  19. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  20. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  21. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  22. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  23. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009
  24. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302
  25. Arefi, M. and Civalek, O. (2020) "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2
  26. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., 39(1), 419-443. https://doi.org/10.1007/s00366-021-01580-8.
  27. Arefi, M. and Adab, N., (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Rand. Complex Med., 1-26. https://doi.org/10.1080/17455030.2021.1989084
  28. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761
  29. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223
  30. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart. Struct. Syst., 19(2),115-126. https://doi.org/10.12989/sss.2017.19.2.115
  31. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano. Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239
  32. Carrera, E., Pagani, A. and Valvano, S. (2017), "Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures", Compos. B. Eng., 111, 294-314. https://doi.org/10.1016/j.compositesb.2016.12.001
  33. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. B. Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005
  34. Civalek, O. (2014), "Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations", Int. J. Pres. Ves. Piping. 113, 1-9. https://doi.org/10.1016/j.ijpvp.2013.10.014
  35. Civalek, O. and Baltacioglu, A.K. (2019), "Free vibration analysis of laminated and FGM composite annular sector plates", Compos. B Eng., 157, 182-194. https://doi.org/10.1016/j.compositesb.2018.08.101
  36. Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.
  37. Chaht, F., Larbi, K., Abdelhakim, H., Mohammed, S.A. Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  38. Dang, W., Liao, S., Yang, B., Yin, Z., Liu, M., Yin, L., Zheng, W. (2023), "An encoder-decoder fusion battery life prediction method based on Gaussian process regression and improvement", J. Energy. Storage., 59, 106469. https://doi.org/10.1016/j.est.2022.106469
  39. Draiche, K., Selim, M.M., Bousahla, A.A. Tounsi, A. Bourada, F. Tounsi, A. and Mahmoud, S.R. (2021), "A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT", Steel. Compos. Struct., 41(5), 697-711. https://doi.org/10.12989/scs.2021.41.5.697
  40. Djilali, N., Bousahla, A.A., Kaci, A., Selim, M.M., Bourada, F., Tounsi, A., Tounsi, A., Benrahou, K.H., and Mahmoud, S.R. (2022), "Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT", Steel. Compos. Struct., 42(6), 779-789. https://doi.org/10.12989/scs.2022.42.6.779.
  41. Dinh Duc, N., and Hong Cong, P. (2018), "Nonlinear thermomechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandw. Struct. Mater., 20(2), 191-218. https://doi.org/10.1177/1099636216648488
  42. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Conc. Constr., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
  43. Ersoy, H., Mercan, K. and Civalek, O. (2018), "Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods", Compos. Struct. 183, 7-20. https://doi.org/10.1016/j.compstruct.2016.11.051
  44. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matter, 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001
  45. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel. Compos. Struct. 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509
  46. Faghidian, S.A. and Tounsi, A. (2022), "Dynamic characteristics of mixed unified gradient elastic nanobeams", Fact. Uni. Ser Mech. Eng., 20(3), 539-552. https://doi.org/10.22190/FUME220703035F
  47. Garg, A., Belarbi, M.O., Tounsi, A., Singh, A. and Mukhopadhyay, T. (2022), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
  48. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct., 49(5), 738-762. https://doi.org/10.1080/15397734.2019.1705166
  49. Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin. Walled. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005
  50. George, V.B. and Kardomateas, A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. B. Eng., 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027
  51. Gao, L. Sun, Y.G. (2015), "Thermal control of composite sandwich structure with lattice truss cores", AIAA, 29, 1. https://doi.org/10.2514/1.T4361
  52. Georgiou, I.T. (2008), "Characterization of nonlinear coupled dynamics in sandwich structures", Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, No. IMECE2008-67498, 707-717. https://doi.org/10.1115/IMECE2008-67498
  53. Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Conc. Constr., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151
  54. Hou, X., Zhang, L., Su, Y., Gao, G., Liu, Y., Na, Z., Chen, T. (2023), "A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification", Nano. Energy., 105, 108013. https://doi.org/10.1016/j.nanoen.2022.108013
  55. He, Q.Z., Hu, H., Belouettar, S., Guint, G., Yu, K., Liu, Y., Biscani, F., Carrera, E. and Potier-Ferry, M. (2011), "Multi-scale modelling of sandwich structures using hierarchical kinematics", Compos. Struct., 93(9), 2375-2383. https://doi.org/10.1016/j.compstruct.2011.03.026
  56. Hu, H., Belouettar, S., Potier-Ferry, M., and Daya, E.M. (2008), "Multi-scale modelling of sandwich structures using the Arlequin method Part I: Linear modelling", Finite. Elem. Anal. Design., 45(1), 37-51. https://doi.org/10.1016/j.finel.2008.07.003
  57. Hu, F., Qiu, L. and Zhou, H. (2022), "Medical device product innovation choices in asia: an empirical analysis based on product space", Front. Public. Health., 10, 871575. https://doi.org/10.3389/fpubh.2022.871575
  58. Habibi, M., Taghdir, A. and Safarpour, H (2019), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. B Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
  59. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil. Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7.
  60. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel. Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
  61. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021) "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches', Int. J. Appl. Mech., 13(4), 2150040. https://doi.org/10.1142/S175882512150040X
  62. Hong Cong, P. and Dinh Duc, N. (2023), "Effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of micro/nano plate with graphene platelet reinforcement, Thin. Wall. Struct., 182, 110146. https://doi.org/10.1016/j.tws.2022.110146
  63. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano. Res. 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  64. Katiyar, V., Gupta, A., Tounsi, A. (2022), "Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM", Steel. Compos. Struct., 45(5), 621-640. https://doi.org/10.12989/scs.2022.45.5.621.
  65. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052
  66. Katariya, P.V., Panda, S.K. and Mehar, K. (2021), "Theoretical modelling and experimental verification of modal responses of skewed laminated sandwich structure with epoxy-filled softcore", Eng. Struct., 228, 111509. https://doi.org/10.1016/j.engstruct.2020.111509
  67. Kim, Y.S. and Park, C. (2021), "Multi-disciplinary optimization of wing sandwich structure using proper orthogonal decomposition and automatic machine learning", Int. J. Aer. Space. Sci., 22, 1085-1091. https://doi.org/10.1007/s42405-021-00378-8
  68. Liew, K.M. Hung, K.C. Lim, M.K. (1993), "A continuum three-dimensional vibration analysis of thick rectangular plates", Int. J. Solids. Struct, 30(24), 3357-3379. https://doi.org/10.1016/0020-7683(93)90089-P
  69. Li, X., Li, T., Liu, L., Wang, Z., Li, X., Huang, J., Xiong, W. (2023), "Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system", J. Clean. Prod., 391, 136119. https://doi.org/10.1016/j.jclepro.2023.136119
  70. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649
  71. Le, T.C. Nguyen, K.D. Minh, H.L. Vu, P.P. Trong, P.N. Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano. Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
  72. Luo, C., Wang, L., Xie, Y. and Chen, B. (2023), "A new conjugate gradient method for moving force identification of vehicle-bridge system", J. Vib. Eng. Tech. https://doi.org/10.1007/s42417-022-00824-1
  73. Lu, C., Zhou, H., Li, L., Yang, A., Xu, C., Ou, Z. and Tian, F. (2022c), "Split-core magnetoelectric current sensor and wireless current measurement application", Measur. J. Int. Measur. Conf., 188, 110527. https://doi.org/10.1016/j.measurement.2021.110527
  74. Lu, Z., Liu, W., Ding, H. and Chen, L. (2022b), "Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator", J. Vib. Acoust., 144(5). https://doi.org/10.1115/1.4054324
  75. Lu, S., Yin, Z., Liao, S., Yang, B., Liu, S., Liu, M. and Zheng, W. (2022a), "An asymmetric encoder-decoder model for Zn-ion battery lifetime prediction", Energy. Rep., 8, 33-50. https://doi.org/10.1016/j.egyr.2022.09.211
  76. Lu, C., Zhu, R., Yu, F., Jiang, X., Liu, Z., Dong, L., Ou, Z. (2021), "Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magnetoelectric composite", Measur. J. Int. Measur. Conf., 168, 108409. https://doi.org/10.1016/j.measurement.2020.108409
  77. Mercan, K. and Civalek, O . (2019), "Geometric mapping for nonrectangular plates with micro/nano or macro scaled under different effects", Int. J. Eng. Appl. Sci., 11(3), 445-454. https://doi.org/10.24107/ijeas.641211
  78. Mulmule, S. and Rath, A.K. (1993), "Application of a multi-director displacement field approach for sandwich shell structure analysis", Comput. Struct., 48(4), 653-660. https://doi.org/10.1016/0045-7949(93)90259-G
  79. Mathew N., Jiang, Z. and Wei, D. (2011), "Analysis of multi-layer sandwich structures by finite element method", Adv. Sci. Let., 4(8-10), 3243-3248. https://doi.org/10.1166/asl.2011.1711
  80. Muhammad, I., Ali, A., Zhou, L., Zhang, W. and Wong, P.K.J. (2022), "Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer", J. Alloys. Compds., 909, 164797. https://doi.org/10.1016/j.jallcom.2022.164797
  81. Peng, Y., Shi, C., Zhu, Y., Gu, M. and Zhuang, S. (2020), "Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement", PhotoniX, 1, 12. https://doi.org/10.1186/s43074-020-00011-z
  82. Ottavio, M.D., Krasnobrizha, A., Valot, E., Polit, O., Vescovini, R. and Dozio, L. (2021), "Dynamic response of viscoelastic multiple-core sandwich structures", J. Sound. Vib., 491, 115753. https://doi.org/10.1016/j.jsv.2020.115753
  83. Rahimi, G.H., Arefi, M., Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  84. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875
  85. Ren, L., Kong, F., Wang, X., Song, Y., Li, X., Zhang, F. and Wang, J. (2022), "Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy", Nano. Energy., 98, 107248. https://doi.org/10.1016/j.nanoen.2022.107248
  86. Rouabhia, A. Chikh, A. Bousahla, A.A. Bourada, F. Heireche, H. Tounsi, A. Benrahou, K.H. Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel. Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
  87. Sidhoum, I.A. Boutchicha, D. Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart. Struct. Syst., 22(3), 303-314. https://doi.org/10.12989/sss.2018.22.3.303
  88. Talebitooti, R. Zarastvand, M. and Darvishgohari, H. (2021), "Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure", J. Sandw. Struct. Mater., 23(4), 1221-1252. https://doi.org/10.1016/j.compositesa.2022.107075
  89. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple", Steel. Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  90. Van Vinh, P., Chinh, N.V. and Tounsi, A. (2022a), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Eur. J. Mech. A Solids, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743
  91. Van Vinh, P., Tounsi, A. and Belarbi, M.O. (2022b), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39(1), 835-855. https://doi.org/10.1007/s00366-022-01687-6
  92. Van Vinh, P., Tounsi, A. (2022b), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
  93. Van Vinh, P., and Tounsi, A. (2022a), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin. Wall. Struct., 174, 109084, https://doi.org/10.1016/j.tws.2022.109084
  94. Sarvestani, H.Y., Akbarzadeh, A.H. Mirbolghasemi, A. and Hermenean, K. (2018), "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability", Mater. Design., 160, 179-193. https://doi.org/10.1016/j.matdes.2018.08.061
  95. Yu, K. Hu, H. Chen, S. Belouettar, S. and Potier-Ferry, M. (2013), "Multi-scale techniques to analyze instabilities in sandwich structures", Compos. Struct., 96, 751-762. https://doi.org/10.1016/j.compstruct.2012.10.007.
  96. Yang, L., Huang, H., Xi, Z., Zheng, L., Xu, S., Tian, G. and Liu, G. (2022a), "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals", Nat. Com., 13(1), 2444. https://doi.org/10.1038/s41467-022-29962-6
  97. Yang, S., Li, X., Yu, T., Wang, J., Fang, H., Nie, F. and Zheng, L. (2022b), "High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry", Adv. Funct. Mater., 32(35), 2202366. https://doi.org/10.1002/adfm.202202366
  98. Yang, Y., Zhu, H., Xu, X., Bao, L., Wang, Y., Lin, H. and Zheng, C. (2021), "Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater", Microporous. Mesoporous. Mater., 324, 111289. https://doi.org/10.1016/j.micromeso.2021.111289
  99. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022a), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087
  100. Zhang, Z., Yang, Q., Yu, Z., Wang, H. and Zhang, T. (2022b), "Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding", Mater. Character., 189. https://doi.org/10.1016/j.matchar.2022.111962