DOI QR코드

DOI QR Code

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Moosa Mazloom (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
  • Received : 2021.07.22
  • Accepted : 2023.08.14
  • Published : 2023.11.25

Abstract

Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Keywords

Acknowledgement

Received July 22, 2021, Revised June 22, 2023, Accepted August 14, 2023)

References

  1. Abna, A. and Mazloom, M. (2022), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003 
  2. ASTM C1609 / C1609M-19a (2019), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, Pennsylvania, U.S.A. https://doi.org/10.1520/C1609_C1609M-19A. 
  3. Bhosale, A.B., Lakavath, C. and Prakash, S.S. (2020), "Multilinear tensile stress-crack width relationships for hybrid fibre reinforced concrete using inverse analysis and digital image correlation", Eng. Struct., 225, 111275. https://doi.org/10.1016/j.engstruct.2020.111275 
  4. Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L. and Panas, I. (2004), "Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement", Chem. Phys. Lett., 392(1-3), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071. 
  5. Reddy, K.C. and Subramaniam, K.V. (2017), "Analysis for multilinear stress-crack opening cohesive relationship: application to macro-synthetic fiber reinforced concrete", Eng. Fract. Mech., 169, 128-45. https://doi.org/10.1016/j.engfracmech.2016.11.015. 
  6. C. Li V. (1992), "Postcrack scaling relations for fiber reinforced cementitious composites", J. Mater. Civil Eng., 4(1), 41-57. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:1(41). 
  7. Diamantonis, N., Marinos, I., Katsiotis, M. S., Sakellariou, A., Papathanasiou, A., Kaloidas, V. and Katsioti, M. (2010), "Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete", Constr Build Mater. 24(8), 1518-1522. https://doi.org/10.1016/j.conbuildmat.2010.02.005. 
  8. Flores-Vivian I, Pradoto R, Moini M, Sobolev K. 2013. "The use of nanoparticles to improve the performance of concrete", 5th Inter. Nano Conference. Czech Republic, EU, ocotber. 
  9. Flores-Vivian, I., Pradoto, R., Moini, M. and Sobolev, K. (2013), "The use of nanoparticles to improve the performance of concrete", Proceedings of the 5th International Nano Conference, Czech Republic, EU, ocotber. 
  10. Fu, C., Guo, R., Lin, Z., Xia, H., Yang, Y. and Ma, Q. (2021), "Effect of nanosilica and silica fume on the mechanical properties and microstructure of lightweight engineered cementitious composites", Constr. Build. Mater., 298, 123788. https://doi.org/10.1016/j.conbuildmat.2021.123788 
  11. Goh SW, You Z. (2009), "A simple stepwise method to determine and evaluate the initiation of tertiary flow for asphalt mixtures under dynamic creep test", Constr Build Mater. 23(11):3398-3405. https://doi.org/10.1016/j.conbuildmat.2009.06.020. 
  12. Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K. (2001), "Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste", Cem. Concr. Res., 31(1), 31-39. https://doi.org/10.1016/S0008-846(00)00441-5. 
  13. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build. Mater., 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045. 
  14. Hillerborg, A. (1980), "Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete", Int. J. Cement Compos., 2(4), 177-184. 
  15. Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energyGF of concrete", Mater Struct. 18(4), 291-296. https://doi.org/10.1007/BF02472919. 
  16. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cem. Concr. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7. 
  17. Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cem Concr Res. 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004. 
  18. Jo, B.W., Kim, C.H., Tae, G.H. and Park, J.B. (2007), "Characteristics of cement mortar with nano-SiO2 particles", Constr Build Mater. 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020. 
  19. Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch-to-depth ratios", Comput. Concr, 22(1), 39-51. http://doi.org/10.12989/cac.2018.22.1.039. 
  20. Karimpour, H. and Mazloom, M. (2022a), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 81(5), 575. https://doi.org/10.12989/sem.2022.81.5.575 
  21. Karimpour, H. and Mazloom, M. (2022b), "Determining a novel softening function for modeling the fracture of concrete", Adv. Mater. Res., 11(4), 351-374. https://doi.org/10.12989/amr.2022.11.4.351 
  22. Kawashima, S., Hou, P., Corr, D.J. and Shah, S.P. (2013), "Modification of cement-based materials with nanoparticles", Cem. Concr. Compos., 36, 8-15. https://doi.org/10.1016/00225096(91)90043-N. 
  23. Kim, J.K., Kim, J.S., Ha, G.J. and Kim, Y.Y. (2007), "Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag", Cem. Concr. Res., 37(7), 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006. 
  24. Lepech, M.D., Li, V.C., Robertson, R.E. and Keoleian, G.A. (2008), "Design of green engineered cementitious composites for improved sustainability", ACI Mater. J., 105(6), 567. 
  25. Li, G. (2004), "Properties of high-volume fly ash concrete incorporating nano-SiO2", Cem. Concr. Res., 34(6), 1043-1049. https://doi.org/10.1016/j.cemconres.2003.11.013. 
  26. Li, Q., Gao, X., Xu, S. (2016), "Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash", Cem. Concr. Compos., 72, 201-212. https://doi.org/10.1016/j.cemconcomp.2016.05.011. 
  27. Li, V.C. (1993), "From micromechanics to structural engineering-the design of cementitous composites for civil engineering applications", J. Struct. Mech, Earthq. Eng., 471, 1-12. https://doi.org/10.2208/jscej.1993.471_1. 
  28. Li, V.C. (2002), "Advances in ECC research", ACI Spec Publ., 206, 373-400. 
  29. Li, V.C. (2003a), "On engineered cementitious composites (ECC)", J. Adv. Concr. Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215. 
  30. Li, V.C. (2003b), "On engineered cementitious composites (ECC) a review of the material and its applications", J. Adv. Concr. Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215. 
  31. Li, V.C. (2019), Engineered Cementitious Composites (ECC), Bendable Concrete for Sustainable and Resilient Infrastructure, Springer, Springer-Verlag, Berlin, Heidelberg. 
  32. Li, V.C., Wang, Y., Backer, S. (1991), "A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites", J. Mech. Phys. Solids, 39(5), 607-625. https://doi.org/10.1016/0022-5096(91)90043-N. 
  33. Lin, Z., Li, V.C. (1997), "Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces", J. Mech. Phys. Solids, 45(5), 763-787. https://doi.org/10.1016/S0022-5096(96)00095-6. 
  34. Marshall, D.B., Cox, B.N. (1988), "A J-integral method for calculating steady-state matrix cracking stresses in composites", Mech. Mater., 7(2), 127-133. https://doi.org/10.1016/0167-6636(88)90011-7. 
  35. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt, and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. http://doi.org/10.12989/amr.2019.8.2.137. 
  36. Mazloom, M. and Mirzamohammadi, S. (2021), "Fracture of fiber-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concr. Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401. 
  37. Mazloom, M. and Salehi, H. (2018), "The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete", IOP Conference Series: Mater. Sci. Eng., 431(6). https://doi.org/10.1088/1757-899X/431/6/062007. 
  38. Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concr. Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375. 
  39. Mazloom, M., Soltani, A., Karamloo, M., Hassanloo, A. and Ranjbar, A. (2018), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv Mater Res. 7(1), 45. http://doi.org/10.12989/amr.2018.7.1.045. 
  40. Mitrovic, A., Antonovic, D., Tanasic, I., Mitrovic, N., Bakic, G., Popovic, D. and Milosevic, M. (2019), "3D digital image correlation analysis of the shrinkage strain in four dual cure composite cements", BioMed Res. Int., 2041348. https://doi.org/10.1155/2019/2041348. 
  41. Mehta, P. and Monteiro, P. (2017), Concrete Microstructure, Properties and Materials, McGraw-Hill Education. 
  42. Mohammed, B.S., Achara, B.E., Nuruddin, M.F., Yaw, M. and Zulkefli, M.Z. (2017), "Properties of nano-silica-modified self-compacting engineered cementitious composites", J. Clean Prod., 162, 1225-1238. https://doi.org/10.1016/j.jclepro.2017.06.137. 
  43. Naaman, A.E. and Najm, H. (1991), "Bond-slip mechanisms of steel fibers in concrete", ACI Mater. J., 88(1991), 135-145.
  44. Naniz, O.A., Mazloom, M. (2018), "Effects of colloidal nanosilica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014. 
  45. Neville, A.M. (1996), Properties of Concrete, ELBS with Addison Wesley Longman Limited. 
  46. Newman, J. and Choo, B.S. (2003), "Advanced concrete technology", Adv. Concr. Technol., 1-1433. https://doi.org/10.1016/B978-0-7506-5686-3.X5246-X. 
  47. Pan, Z., Wu, C., Liu, J., Wang. W. and Liu, J. (2015), "Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)", Constr. Build Mater., 78, 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071. 
  48. Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Doctoral dissertation, Lund University, Sweden. 
  49. Poon, C.S., Lam, L. and Wong, Y.L. (2000), "A study on high strength concrete prepared with large volumes of low calcium fly ash", Cem. Concr. Res., 30(3), 447-455. https://doi.org/10.1016/S0008-8846(99)00271-9. 
  50. Poppe, A.M. and De Schutter, G. (2005), "Cement hydration in the presence of high filler contents", Cem. Concr. Res., 35(12), 2290-2299. https://doi.org/10.1016/j.cemconres.2005.03.008. 
  51. Pourjavadi, A., Fakoorpoor, S.M., Khaloo, A. and Hosseini, P. (2012), "Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles", Mater. Des., 42, 94-101. https://doi.org/10.1016/j.matdes.2012.05.030. 
  52. Qian, S. and Li, V.C. (2008), "Simplified inverse method for determining the tensile properties of strain hardening cementitious composites (SHCC)", J. Adv. Concr. Technol., 6(2), 353-363.https://doi.org/10.3151/jact.6.353 
  53. Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001. 
  54. Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech. 35(2), 379-386. https://doi.org/10.1115/1.3601206. 
  55. Rilem, D.R. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290.  https://doi.org/10.1007/BF02472917
  56. Rooke, D.P. and Cartwright, D.J. (1976), Compendium of Stress Intensity Factors, Procure Exec Minist Defence HMSO. 
  57. Salehi, H. and Mazloom, M. (2018), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concr. Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418. 
  58. Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D. and Repette, W.L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23(7), 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005. 
  59. Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S., Mondal, P. (2009), Nanoscale Modification of Cementitious Materials, In Nanotechnology in Construction, Springer. https://doi.org/10.1007/978-3-642-00980-8_16. 
  60. Swaddiwudhipong, S., Lu, H.R., Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cem. Concr. Res., 33(12), 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X. 
  61. Torabian Isfahani, F., Redaelli, E., Li, W. and Sun, Y. (2017), "Effects of nanosilica on early age stages of cement hydration", J. Nanomater., 4687484. https://doi.org/10.1155/2017/4687484. 
  62. Tsivilis, S., Batis, G., Chaniotakis, E., Grigoriadis, G. and Theodossis, D. (2000), "Properties and behavior of limestone cement concrete and mortar", Cem. Concr. Res., 30(10), 1679-1683. http://doi.org/10.1016/S0008-8846(00)00372-0. 
  63. Wang, S. and Li, V.C. (2007), "Engineered cementitious composites with high-volume fly ash", ACI Mater. J., 104(3), 233. 
  64. Yang, E.H., Li, V.C. (2010), "Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model", Constr. Build Mater., 24(2), 130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014. 
  65. Yon, J.H., Hawkins, N.M., Kobayashi, A.S. (1997), "Comparisons of concrete fracture models", J. Eng. Mech., 123(3), 196-203. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(196). 
  66. Zhang, J. and Li, V.C. (2002), "Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites", Compos. Sci. Technol., 62(6), 775-781. https://doi.org/10.1016/S0266-3538(02)00045-3 
  67. Zhang, Y.M., Sun, W. and Yan, H.D. (2000), "Hydration of high-volume fly ash cement pastes", Cem. Concr. Compos., 22(6), 445-452. https://doi.org/10.1016/S0958-9465(00)00044-5. 
  68. Zhou, J., Qian, S., Beltran, M.G.S., Ye, G., van Breugel, K., Li, V.C. (2010), "Development of engineered cementitious composites with limestone powder and blast furnace slag", Mater. Struct., 43(6), 803-814. http://doi.org/10.1617/s11527-009-9549-0. 
  69. Zhou, J., Qian, S., Ye, G., Copuroglu, O., van Breugel, K., Li, V.C. (2012), "Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence", Cem. Concr. Compos., 34(3), 342-348. https://doi.org/10.1016/j.cemconcomp.2011.11.019.