Acknowledgement
The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work. Also, they would like to thank the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 682561/24.
References
- Akbas, S.D, (2017), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
- Akhavanalavi, S.M., Mohammadimehr, M., Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
- Al-shujairi, M., Mollamahmutoglu, C . (2018), "Buckling and free vibration analysis of functionally graded sandwich micro beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103
- Ansari, R., Norouzzadeh, A., Shakouri, A.H., Bazdid-vahdati, M., Rouhi, H. (2017), "Thin-Walled Structures Finite element analysis of vibrating micro beams and -plates using a three-dimensional micropolar element", Thin Wall. Struct., 124, 489-500. https://doi.org/10.1016/j.tws.2017.12.036
- Arani, A.G. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., 28(2), 149-165. https://doi.org/10.12989/scs.2018.28.2.149
- Arani, A.G., Zamani, M.H. (2019), "Investigation of electric field effect on size- dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation", J. Sandw. Struct. Mater., 21(8), 2700-2734. https://doi.org/10.1177/1099636217721405
- Arefi, M., Karroubi, R., Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layers", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9
- Arefi, M., Pourjamshidian, M., Arani, A.G. (2018), "Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories", Eur. Phys. J. Plus., 133(5), 193. https://doi.org/10.1140/epjp/i2018-12015-1
- Arefi, M. and Zenkour, A.M. (2017), "Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets", Compos. Struct., 159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
- Bamdad, M., Mohammadimehr, M., Alambeigi, K. (2020). "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/scs.2020.36.6.671
- Bahaadini, R., Saidi, A.R. (2018), "On the stability of spinning thin-walled porous beams", Thin Wall. Struct., 132, 604-615. https://doi.org/10.1016/j.tws.2018.09.022
- Chan, D.Q., Van Thanh, N., Khoa, N.D., Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837
- Chen, D., Yang, J., Kitipornchai, S. (2017) "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Chen, D., Yang, J., Kitipornchai, S. (2016a) "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 197, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
- Chen, D., Yang, J., Kitipornchai, S. (2016b), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci. 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Dastjerdi, S., Abbasi, M. (2018), "A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method", Ultramicroscopy., 196, 33-39. https://doi.org/10.1016/j.ultramic.2018.09.014
- Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D. (2020), "Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment", Int. J. Mech. Sci., 186, 105906. https://doi.org/10.1016/j.ijmecsci.2020.105906
- De, Souza., Eloy, F., Gomes, G.F., Ancelotti, J.r, A.C., Da, Cunha., J.r, S.S., Bombard, A.J., Junqueira, D.M. (2018), "Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core", Eng. Struct., 176, 231-242. https://doi.org/10.1016/j.engstruct.2018.08.101
- Domagalski, L. (2018), "Free and forced large amplitude vibrations of periodically inhomogeneous slender beams", Arch. Civil Mech. Eng., 18(4), 1506-1519. https://doi.org/10.1016/j.acme.2018.06.005
- Duc, N.D., Van Tung, H. (2010), "Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression", Comput. Mater. Sci., 49(4), S313-S316. https://doi.org/10.1016/j.commatsci.2009.12.030
- Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam: Vietnam Natl Univ Press.
- Duc, N.D. (2016a), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Duc, N.D. (2016b), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater, 20(3), 351-378. https://doi.org/10.1177/1099636216653266
- Duc, N.D., Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A Solids, 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002
- Duc, N.D., Pham, C.H. (2018), "'Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycombs", J. San. Struct. Mater., 20(6), 692-717. https:// 10.1177/1099636216674729.
- Ebrahimi, F., Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 428-435. https://doi.org/10.1007/s40430-018-1350-y
- Eltaher, M.A., Fouda, N., El-midany, T., Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141-149. https://doi.org/10.1007/s40430-018-1065-0
- Khdeir, A.A., Aldraihem, O.J. (2016), "Free vibration of sandwich beams with soft core", Compos. Struct., 154, 179-189. https://doi.org/10.1016/j.compstruct.2016.07.045
- Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M., Asemi, K. (2021). "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361
- Kim, J., Zur, K.K., Reddy, J.N. (2018), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023
- Kitipornchai, S., Chen, D., Yang, J. (2016), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
- Khoa, N.D., Thiem, H.T., Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583
- Li, L., Tang, H., Hu, Y. (2017), "Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature", Compos. Struct., 184, 1177-1188. https://doi.org/10.1016/j.compstruct.2017.10.052
- Liu, H., Liu, H., Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042
- Luat, D. T., Van Thom, D., Thanh, T. T., Van Minh, P., Van Ke, T., Van Vinh, P. (2021). "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055
- Long, N.V., Nguyen, V.L., Tran, M.T., Thai, D.K. (2022) "Exact solution for nonlinear static behaviors of functionally graded beams with porosities resting on elastic foundation using neutral surface concept ", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 236(1), 481-495. https://doi.org/10.1177/09544062211021112.
- Madenci, E. (2021). "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157
- Ma, H.M., Gao, X.Ã ., Reddy, J.N. (2008), "Journal of the mechanics and physics of solids a microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Rabby, S., Kazemi, M. (2018), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro scale Timoshenko beam", J. Vib. Control., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871
- Mohammadimehr, M., Akhavan, Alavi, S., Okhravi, S., Edjtahed, S. (2017), "Free vibration analysis of micro- magneto-electro-elastic cylindrical sandwich panel considering functionally graded carbon nanotube - reinforced nanocomposite face sheets, various circuit boundary conditions , and temperature-dependent material properti", J. Intell. Mater. Syst. Struct., 29(5), 863-882. https://doi.org/10.1177/1045389X17721048
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan, Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R., Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
- Mohammadimehr, M., Okhravi, S.V., Alavi, S.M.A. (2016a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control., 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022
- Mohammadimehr, M., Salemi, M., Navi, B.R. (2016b), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
- Nejadi, M. M., Mohammadimehr, M. (2020). "Buckling analysis of nanocomposite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM". Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059
- Nejadi, M. M., Mohammadimehr, M., Mehrabi, M. (2021). "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539
- Nguyen, T.B., Reddy, J.N., Rungamornrat, J., Lawongkerd, J. (2019) "Nonlinear analysis for bending, buckling and post-buckling of nano-beams with nonlocal and surface energy effects", Int. J. Struct. Stabil. Dyn., 19(11), 1950130. https://doi.org/10.1142/S021945541950130X
- Quan, T.Q., Dinh Duc, N. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stress., 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601
- Quan, T.Q., Van Quyen, N., Duc, N.D. (2021), "An analytical approach for nonlinear thermo-electro-elastic forced vibration of piezoelectric penta-Graphene plates", Eur. J. Mech. A Solids, 85, 104095. https://doi.org/10.1016/j.euromechsol.2020.104095
- Quan, T.Q., Anh, V.M., Mahesh, V., Duc, N.D. (2020). "Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2020.1752864
- Safari, M., Mohammadimehr, M., Ashrafi, H. (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10(2), 115-128. https://doi.org/10.12989/anr.2021.10.2.115
- Sahmani,, S., Mohammadi, M., Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro / nano-plates reinforced with", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031
- Sadeghpour, E., Sadighi, M., Ohadi, A. (2015), "Free vibration analysis of a debonded curved sandwich beam", Eur. J. Mech. A Solids., 57, 71-84. https://doi.org/10.1016/j.euromechsol.2015.11.006
- Safari, M., Mohammadimehr, M., Ashrafi, H. (2023), "'Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core", Struct. Eng. Mech., 88(1), 1-12. https://doi.org/10.12989/sem.2023.88.1.001
- Sae-Long, W., Limkatanyu, S., Hansapinyo, C., Prachasaree, W., Rungamornrat, J., Kwon, M. (2021a) "Nonlinear flexibility-based beam element on Winkler-Pasternak foundation", Geomech. Eng., 24(4), 371-388. https://doi.org/10.12989/gae.2021.24.4.371
- Sae-Long, W., Limkatanyu, S., Rungamornrat, J., Prachasaree, W., Sukontasukkul, P., Sedighi, H.M. (2021b) "A rational beam-elastic substrate model with incorporation of beam-bulk nonlocality and surface-free energy", Eur. Phys. J. Plus, 136(1), 80. https://doi.org/10.1140/epjp/s13360-020-00992-7
- She, G., Ren, Y., Yuan, F., Xiao, W. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
- Simsek, M., Al-shujairi, M. (2016), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098
- Tian, J., Zhang, Z., Hua, H. (2018), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci., 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056
- Tossapanon, P., Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085
- Tran, M.T., Nguyen V.L., Pham, S.D., Rungamornrat, J. (2020) "Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment", Acta Mechanica, 231(6), 2545-2564. https://doi.org/10.1007/s00707-020-02658-y
- Vo, D., Duong, N.H., Rungamornrat, J., Nanakorn, P. (2022a) "A 2D field-consistent beam element for large displacement analysis using a rational Bezier representation with varying weights", Appl. Math. Model., 104, 806-825. https://doi.org/10.1016/j.apm.2021.12.022.
- Vo, D., Zhou, K., Rungamornrat, J., Bui, T.Q. (2022b) "Spatial arbitrarily curved microbeams with the modified couple stress theory: Formulation of equations of motion", Eur. J. Mech. A Solids, 92, 104475. https://doi.org/10.1016/j.euromechsol.2021.104475.
- Walczak, Z., Jasion, P., Wittenbeck, L. (2017), "Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores - the lengthwise corrugated main core", Thin Wall. Struct., 112, 78-82. https://doi.org/10.1016/j.tws.2016.12.013
- Wang, Y., Xie, K., Fu, T., Shi, C. (2018), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014
- Wu, H., Kitipornchai, S., Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
- Wu, H., Yang, J., Kitipornchai, S. (2020) "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stabil. Dyn., 20(13), 2041015. https://doi.org/10.1142/S0219455420410151.
- Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M., Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 52, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004
- Zeng, S., Wang, B.L., Wang, K.F. (2018), "Nonlinear vibration of piezoelectric sandwich nanoplate with a functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040
- Zhang, K., Ge, M., Zhao, C., Deng, Z., Xu, X. (2018), "Free vibration of nonlocal Timoshenko beams made of functionally graded materials by Symplectic method", Compos. Part B Eng., 156, 174-184. https://doi.org/10.1016/j.compositesb.2018.08.051
- Zhang, Z., Han, B., Zhang, Q., Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045
- Zhu, K., Chung, J. (2019), "Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions", Appl. Math. Modell., 66, 362-382. https://doi.org/10.1016/j.apm.2018.09.021