DOI QR코드

DOI QR Code

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehdi Mohammadimehr (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mostafa Bamdad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2021.11.14
  • Accepted : 2022.06.30
  • Published : 2023.11.25

Abstract

The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work. Also, they would like to thank the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 682561/24.

References

  1. Akbas, S.D, (2017), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
  2. Akhavanalavi, S.M., Mohammadimehr, M., Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
  3. Al-shujairi, M., Mollamahmutoglu, C . (2018), "Buckling and free vibration analysis of functionally graded sandwich micro beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103
  4. Ansari, R., Norouzzadeh, A., Shakouri, A.H., Bazdid-vahdati, M., Rouhi, H. (2017), "Thin-Walled Structures Finite element analysis of vibrating micro beams and -plates using a three-dimensional micropolar element", Thin Wall. Struct., 124, 489-500. https://doi.org/10.1016/j.tws.2017.12.036
  5. Arani, A.G. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., 28(2), 149-165. https://doi.org/10.12989/scs.2018.28.2.149
  6. Arani, A.G., Zamani, M.H. (2019), "Investigation of electric field effect on size- dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation", J. Sandw. Struct. Mater., 21(8), 2700-2734. https://doi.org/10.1177/1099636217721405
  7. Arefi, M., Karroubi, R., Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layers", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9
  8. Arefi, M., Pourjamshidian, M., Arani, A.G. (2018), "Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories", Eur. Phys. J. Plus., 133(5), 193. https://doi.org/10.1140/epjp/i2018-12015-1
  9. Arefi, M. and Zenkour, A.M. (2017), "Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets", Compos. Struct., 159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
  10. Bamdad, M., Mohammadimehr, M., Alambeigi, K. (2020). "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/scs.2020.36.6.671
  11. Bahaadini, R., Saidi, A.R. (2018), "On the stability of spinning thin-walled porous beams", Thin Wall. Struct., 132, 604-615. https://doi.org/10.1016/j.tws.2018.09.022
  12. Chan, D.Q., Van Thanh, N., Khoa, N.D., Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837
  13. Chen, D., Yang, J., Kitipornchai, S. (2017) "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  14. Chen, D., Yang, J., Kitipornchai, S. (2016a) "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 197, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  15. Chen, D., Yang, J., Kitipornchai, S. (2016b), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci. 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  16. Dastjerdi, S., Abbasi, M. (2018), "A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method", Ultramicroscopy., 196, 33-39. https://doi.org/10.1016/j.ultramic.2018.09.014
  17. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D. (2020), "Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment", Int. J. Mech. Sci., 186, 105906. https://doi.org/10.1016/j.ijmecsci.2020.105906
  18. De, Souza., Eloy, F., Gomes, G.F., Ancelotti, J.r, A.C., Da, Cunha., J.r, S.S., Bombard, A.J., Junqueira, D.M. (2018), "Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core", Eng. Struct., 176, 231-242. https://doi.org/10.1016/j.engstruct.2018.08.101
  19. Domagalski, L. (2018), "Free and forced large amplitude vibrations of periodically inhomogeneous slender beams", Arch. Civil Mech. Eng., 18(4), 1506-1519. https://doi.org/10.1016/j.acme.2018.06.005
  20. Duc, N.D., Van Tung, H. (2010), "Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression", Comput. Mater. Sci., 49(4), S313-S316. https://doi.org/10.1016/j.commatsci.2009.12.030
  21. Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam: Vietnam Natl Univ Press.
  22. Duc, N.D. (2016a), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
  23. Duc, N.D. (2016b), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater, 20(3), 351-378. https://doi.org/10.1177/1099636216653266
  24. Duc, N.D., Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A Solids, 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002
  25. Duc, N.D., Pham, C.H. (2018), "'Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycombs", J. San. Struct. Mater., 20(6), 692-717. https:// 10.1177/1099636216674729.
  26. Ebrahimi, F., Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 428-435. https://doi.org/10.1007/s40430-018-1350-y
  27. Eltaher, M.A., Fouda, N., El-midany, T., Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141-149. https://doi.org/10.1007/s40430-018-1065-0
  28. Khdeir, A.A., Aldraihem, O.J. (2016), "Free vibration of sandwich beams with soft core", Compos. Struct., 154, 179-189. https://doi.org/10.1016/j.compstruct.2016.07.045
  29. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M., Asemi, K. (2021). "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361
  30. Kim, J., Zur, K.K., Reddy, J.N. (2018), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023
  31. Kitipornchai, S., Chen, D., Yang, J. (2016), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
  32. Khoa, N.D., Thiem, H.T., Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583
  33. Li, L., Tang, H., Hu, Y. (2017), "Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature", Compos. Struct., 184, 1177-1188. https://doi.org/10.1016/j.compstruct.2017.10.052
  34. Liu, H., Liu, H., Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042
  35. Luat, D. T., Van Thom, D., Thanh, T. T., Van Minh, P., Van Ke, T., Van Vinh, P. (2021). "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055
  36. Long, N.V., Nguyen, V.L., Tran, M.T., Thai, D.K. (2022) "Exact solution for nonlinear static behaviors of functionally graded beams with porosities resting on elastic foundation using neutral surface concept ", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 236(1), 481-495. https://doi.org/10.1177/09544062211021112.
  37. Madenci, E. (2021). "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157
  38. Ma, H.M., Gao, X.Ã ., Reddy, J.N. (2008), "Journal of the mechanics and physics of solids a microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  39. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Rabby, S., Kazemi, M. (2018), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro scale Timoshenko beam", J. Vib. Control., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871
  40. Mohammadimehr, M., Akhavan, Alavi, S., Okhravi, S., Edjtahed, S. (2017), "Free vibration analysis of micro- magneto-electro-elastic cylindrical sandwich panel considering functionally graded carbon nanotube - reinforced nanocomposite face sheets, various circuit boundary conditions , and temperature-dependent material properti", J. Intell. Mater. Syst. Struct., 29(5), 863-882. https://doi.org/10.1177/1045389X17721048
  41. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan, Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R., Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
  42. Mohammadimehr, M., Okhravi, S.V., Alavi, S.M.A. (2016a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control., 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022
  43. Mohammadimehr, M., Salemi, M., Navi, B.R. (2016b), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  44. Nejadi, M. M., Mohammadimehr, M. (2020). "Buckling analysis of nanocomposite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM". Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059
  45. Nejadi, M. M., Mohammadimehr, M., Mehrabi, M. (2021). "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539
  46. Nguyen, T.B., Reddy, J.N., Rungamornrat, J., Lawongkerd, J. (2019) "Nonlinear analysis for bending, buckling and post-buckling of nano-beams with nonlocal and surface energy effects", Int. J. Struct. Stabil. Dyn., 19(11), 1950130. https://doi.org/10.1142/S021945541950130X
  47. Quan, T.Q., Dinh Duc, N. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stress., 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601
  48. Quan, T.Q., Van Quyen, N., Duc, N.D. (2021), "An analytical approach for nonlinear thermo-electro-elastic forced vibration of piezoelectric penta-Graphene plates", Eur. J. Mech. A Solids, 85, 104095. https://doi.org/10.1016/j.euromechsol.2020.104095
  49. Quan, T.Q., Anh, V.M., Mahesh, V., Duc, N.D. (2020). "Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2020.1752864
  50. Safari, M., Mohammadimehr, M., Ashrafi, H. (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10(2), 115-128. https://doi.org/10.12989/anr.2021.10.2.115
  51. Sahmani,, S., Mohammadi, M., Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro / nano-plates reinforced with", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031
  52. Sadeghpour, E., Sadighi, M., Ohadi, A. (2015), "Free vibration analysis of a debonded curved sandwich beam", Eur. J. Mech. A Solids., 57, 71-84. https://doi.org/10.1016/j.euromechsol.2015.11.006
  53. Safari, M., Mohammadimehr, M., Ashrafi, H. (2023), "'Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core", Struct. Eng. Mech., 88(1), 1-12. https://doi.org/10.12989/sem.2023.88.1.001
  54. Sae-Long, W., Limkatanyu, S., Hansapinyo, C., Prachasaree, W., Rungamornrat, J., Kwon, M. (2021a) "Nonlinear flexibility-based beam element on Winkler-Pasternak foundation", Geomech. Eng., 24(4), 371-388. https://doi.org/10.12989/gae.2021.24.4.371
  55. Sae-Long, W., Limkatanyu, S., Rungamornrat, J., Prachasaree, W., Sukontasukkul, P., Sedighi, H.M. (2021b) "A rational beam-elastic substrate model with incorporation of beam-bulk nonlocality and surface-free energy", Eur. Phys. J. Plus, 136(1), 80. https://doi.org/10.1140/epjp/s13360-020-00992-7
  56. She, G., Ren, Y., Yuan, F., Xiao, W. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  57. Simsek, M., Al-shujairi, M. (2016), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098
  58. Tian, J., Zhang, Z., Hua, H. (2018), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci., 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056
  59. Tossapanon, P., Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085
  60. Tran, M.T., Nguyen V.L., Pham, S.D., Rungamornrat, J. (2020) "Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment", Acta Mechanica, 231(6), 2545-2564. https://doi.org/10.1007/s00707-020-02658-y
  61. Vo, D., Duong, N.H., Rungamornrat, J., Nanakorn, P. (2022a) "A 2D field-consistent beam element for large displacement analysis using a rational Bezier representation with varying weights", Appl. Math. Model., 104, 806-825. https://doi.org/10.1016/j.apm.2021.12.022.
  62. Vo, D., Zhou, K., Rungamornrat, J., Bui, T.Q. (2022b) "Spatial arbitrarily curved microbeams with the modified couple stress theory: Formulation of equations of motion", Eur. J. Mech. A Solids, 92, 104475. https://doi.org/10.1016/j.euromechsol.2021.104475.
  63. Walczak, Z., Jasion, P., Wittenbeck, L. (2017), "Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores - the lengthwise corrugated main core", Thin Wall. Struct., 112, 78-82. https://doi.org/10.1016/j.tws.2016.12.013
  64. Wang, Y., Xie, K., Fu, T., Shi, C. (2018), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014
  65. Wu, H., Kitipornchai, S., Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
  66. Wu, H., Yang, J., Kitipornchai, S. (2020) "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stabil. Dyn., 20(13), 2041015. https://doi.org/10.1142/S0219455420410151.
  67. Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M., Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 52, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004
  68. Zeng, S., Wang, B.L., Wang, K.F. (2018), "Nonlinear vibration of piezoelectric sandwich nanoplate with a functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040
  69. Zhang, K., Ge, M., Zhao, C., Deng, Z., Xu, X. (2018), "Free vibration of nonlocal Timoshenko beams made of functionally graded materials by Symplectic method", Compos. Part B Eng., 156, 174-184. https://doi.org/10.1016/j.compositesb.2018.08.051
  70. Zhang, Z., Han, B., Zhang, Q., Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045
  71. Zhu, K., Chung, J. (2019), "Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions", Appl. Math. Modell., 66, 362-382. https://doi.org/10.1016/j.apm.2018.09.021