과제정보
The authors express gratitude for the financial support provided by UTM Fundamental Research, UTMFR (Cost Centre No.: Q.J130000.3823.22H76), which facilitated the seamless progression of thi research. Michael Tan extends his appreciation to the UTM Research Management Centre (RMC) for fostering a conducive environment, enabling his results-driven team to produce industry-standard outcomes.
참고문헌
- Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S. and Gervasoni, J.L. (2016), Graphene Science Handbook: Nanostructure and Atomic Arrangement, CRC Press.
- Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. and Wirtz, L. (2011), "Coupling of excitons and defect states in boron-nitride nanostructures", Phys. Rev. B, 83(14), 144115. https://doi.org/10.1103/PhysRevB.83.144115.
- Baggott, J. (2000), The meaning of quantum theory: a guide for students of chemistry and physics, Oxford Science Publications
- Chegel, R. (2016), "Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field", Appl. Phys. A, 122(6), 567. https://doi.org/10.1007/s00339-016-0095-7.
- Chuan, M.W., Lok, S.Z., Hamzah, A., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2023), "Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method", Adv. Nano Res., 14(1), 1-15. https://doi.org/10.12989/anr.2023.14.1.001.
- Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020a), "2D honeycomb silicon: a review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.
- Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlatt. Microstruct., 140, 17. https://doi.org/10.1016/j.spmi.2020.106429.
- Chuan, M.W., Wong, Y.B., Hamzah, A., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2022), "Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach", Adv. Nano Res., 12(2), 213-221. https://doi.org/10.12989/anr.2022.12.2.213.
- Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164313.
- DiBenedetto, A. (2017), The Electronic Properties of Hexagonal Boron Nitride and Graphene Nanoribbons, Ball State University.
- DiBenedetto, A. and Khatun, M. (2018), "Electronic properties of edge-terminated zigzag hexagonal boron nitride nanoribbons", J. Phys. D Appl. Phys., 52(2), 025301. https://doi.org/10.1088/1361-6463/aae674.
- Du, A.J., Smith, S.C. and Lu, G.Q. (2007), "First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon", Chem. Phys. Lett., 447(4), 181-186. https://doi.org/10.1016/j.cplett.2007.09.038.
- Goh, E., Chin, H., Wong, K., Indra, I. and Tan, M. (2018), "Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tight-binding Hamiltonian", J. Nanoelectr. Optoelectr., 13, 289-300. https://doi.org/10.1166/jno.2018.2206.
- Goringe, C.M., Bowler, D.R. and Hernandez, E. (1997), "Tight-binding modelling of materials", Reports Prog. Phys., 60(12), 1447-1512. https://doi.org/10.1088/0034-4885/60/12/001.
- Guerra, T., Araujo, L.R.S. and Azevedo, S. (2019), "Magnetic and electronic properties of diamond-shaped graphene-boron nitride nanoribbons and nanoflakes", J. Phys. Chem. Solids, 135, 109085. https://doi.org/10.1016/j.jpcs.2019.109085.
- Huang, B., Lee, H., Gu, B.L., Liu, F. and Duan, W. (2012), "Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures", Nano Res., 5(1), 62-72. https://doi.org/10.1007/s12274-011-0185-y.
- Izyumskaya, N., Demchenko, D.O., Das, S., O zgur, u ., Avrutin, V. and Morkoc, H. (2017), "Recent development of boron nitride towards electronic applications", Adv. Electr. Mater., 3(5), 1600485. https://doi.org/10.1002/aelm.201600485.
- Jin, L., Li-Zhong, S. and Jian-Xin, Z. (2010), "Strain effects on electronic properties of boron nitride nanoribbons", Chinese Phys. Lett., 27(7), 077101. https://doi.org/10.1088/0256-307X/27/7/077101.
- Kumar, C.V. and Pattammattel, A. (2017), Chapter 1 - Discovery of graphene and beyond, Elsevier.
- Lee, S.H. and Jhi, S.H. (2015), "A first-principles study on three-dimensional covalently-bonded hexagonal boron nitride nanoribbons", J. Phys. Condens. Matter., 27(7), 075301. https://doi.org/10.1088/0953-8984/27/7/075301.
- Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017). "Analytical study of the electronic properties of boron nitride nanosheet", 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 23-25 August.
- Lopez-Bezanilla, A., Huang, J., Terrones, H. and Sumpter, B.G. (2012), "Structure and electronic properties of edge-functionalized armchair boron nitride nanoribbons", J. Phys. Chem. C, 116(29), 15675-15681. https://doi.org/10.1021/jp3036583.
- Ma, H., Lin, S.H., Carpenter, R.W., Rice, P. and Sankey, O.F. (1993), "Ab initio calculation of band structure, x-ray emission, quantum yield, and electron-energy-loss spectra of hexagonal boron nitride", J. Appl. Phys., 73(11), 7422-7426. https://doi.org/10.1063/1.353983.
- Makov, G. and Payne, M.C. (1995), "Periodic boundary conditions in ab initio calculations", Phys. Rev. B, 51(7), 4014-4022. https://doi.org/10.1103/PhysRevB.51.4014.
- Morrell, R. (2000), 4.01 - Matrix Materials, Pergamon, Oxford.
- Oxtoby, D., Gillis, H. and Butler, L. (2015), Principles of modern chemistry. Cengage Learning, Saunders College Publishing, Fort Worth, Texas, U.S.A.
- Park, C.H. and Louie, S.G. (2008), "Energy gaps and stark effect in boron nitride nanoribbons", Nano Lett., 8(8), 2200-2203. https://doi.org/10.1021/nl080695i.
- Ribeiro, R.M. and Peres, N.M.R. (2011), "Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description", Phys. Rev. B, 83(23), 235312. https://doi.org/10.1103/PhysRevB.83.235312.
- Schrodinger, E. (1926), "An Undulatory Theory of the Mechanics of Atoms and Molecules", Phys. Rev., 28(6), 1049-1070. https://doi.org/10.1103/PhysRev.28.1049.
- Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I. and Ajayan, P.M. (2010), "Large scale growth and characterization of atomic hexagonal boron nitride layers", Nano Lett., 10(8), 3209-3215. https://doi.org/10.1021/nl1022139.
- Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y. (1988), "The tight-binding bond model", J. Phys. C Solid State Phys., 21(1), 35-66. https://doi.org/10.1088/0022-3719/21/1/007.
- Tang, S. and Cao, Z. (2010), "Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations", Phys. Chem. Chem. Phys., 12(10), 2313-2320. https://doi.org/10.1039/B920754F.
- Watanabe, K., Taniguchi, T. and Kanda, H. (2004), "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal", Nature Mater., 3(6), 404-409. https://doi.org/10.1038/nmat1134.
- Xie, Z.X., Tang, L.M., Pan, C.N., Chen, Q. and Chen, K.Q. (2013), "Ballistic thermoelectric properties in boron nitride nanoribbons", J. Appl. Phys., 114(14), 144311. https://doi.org/10.1063/1.4824750.
- Zeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y. and Golberg, D. (2010), "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping", Nano Lett., 10(12), 5049-5055. https://doi.org/10.1021/nl103251m
- Zhao, K., Zhao, M., Wang, Z. and Fan, Y. (2010), "Tight-binding model for the electronic structures of SiC and BN nanoribbons", Physica E, 43(1), 440-445. https://doi.org/10.1016/j.physe.2010.08.025.
- Zheng, F., Sasaki, K.I., Saito, R., Duan, W. and Gu, B.L. (2009), "Edge states of zigzag boron nitride nanoribbons", J. Phys. Soc. Japan, 78(7), 074713. https://doi.org/10.1143/JPSJ.78.074713.
- Zheng, F., Zhou, G., Liu, Z., Wu, J., Duan, W., Gu, B.L. and Zhang, S.B. (2008), "Half metallicity along the edge of zigzag boron nitride nanoribbons", Phys. Rev. B, 78(20), 205415. https://doi.org/10.1103/PhysRevB.78.205415.
- Zunger, A. (1974), "A molecular calculation of electronic properties of layered crystals. I. Truncated crystal approach for hexagonal boron nitride", J. Phys. C Solid State Phys., 7(1), 76-95. https://doi.org/10.1088/0022-3719/7/1/016.