DOI QR코드

DOI QR Code

Edge perturbation on electronic properties of boron nitride nanoribbons

  • K.L. Wong (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • K.W. Lai (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • M.W. Chuan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • Y. Wong (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • A. Hamzah (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • S. Rusli (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • N.E. Alias (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • S. Mohamed Sultan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • C.S. Lim (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • M.L.P. Tan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia)
  • Received : 2020.10.27
  • Accepted : 2023.10.17
  • Published : 2023.11.25

Abstract

Hexagonal boron nitride (h-BN), commonly referred to as Boron Nitride Nanoribbons (BNNRs), is an electrical insulator characterized by high thermal stability and a wide bandgap semiconductor property. This study delves into the electronic properties of two BNNR configurations: Armchair BNNRs (ABNNRs) and Zigzag BNNRs (ZBNNRs). Utilizing the nearest-neighbour tight-binding approach and numerical methods, the electronic properties of BNNRs were simulated. A simplifying assumption, the Hamiltonian matrix is used to compute the electronic properties by considering the self-interaction energy of a unit cell and the interaction energy between the unit cells. The edge perturbation is applied to the selected atoms of ABNNRs and ZBNNRs to simulate the electronic properties changes. This simulation work is done by generating a custom script using numerical computational methods in MATLAB software. When benchmarked against a reference study, our results aligned closely in terms of band structure and bandgap energy for ABNNRs. However, variations were observed in the peak values of the continuous curves for the local density of states. This discrepancy can be attributed to the use of numerical methods in our study, in contrast to the semi-analytical approach adopted in the reference work.

Keywords

Acknowledgement

The authors express gratitude for the financial support provided by UTM Fundamental Research, UTMFR (Cost Centre No.: Q.J130000.3823.22H76), which facilitated the seamless progression of thi research. Michael Tan extends his appreciation to the UTM Research Management Centre (RMC) for fostering a conducive environment, enabling his results-driven team to produce industry-standard outcomes.

References

  1. Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S. and Gervasoni, J.L. (2016), Graphene Science Handbook: Nanostructure and Atomic Arrangement, CRC Press.
  2. Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. and Wirtz, L. (2011), "Coupling of excitons and defect states in boron-nitride nanostructures", Phys. Rev. B, 83(14), 144115. https://doi.org/10.1103/PhysRevB.83.144115.
  3. Baggott, J. (2000), The meaning of quantum theory: a guide for students of chemistry and physics, Oxford Science Publications 
  4. Chegel, R. (2016), "Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field", Appl. Phys. A, 122(6), 567. https://doi.org/10.1007/s00339-016-0095-7.
  5. Chuan, M.W., Lok, S.Z., Hamzah, A., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2023), "Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method", Adv. Nano Res., 14(1), 1-15. https://doi.org/10.12989/anr.2023.14.1.001.
  6. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020a), "2D honeycomb silicon: a review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.
  7. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlatt. Microstruct., 140, 17. https://doi.org/10.1016/j.spmi.2020.106429.
  8. Chuan, M.W., Wong, Y.B., Hamzah, A., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2022), "Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach", Adv. Nano Res., 12(2), 213-221. https://doi.org/10.12989/anr.2022.12.2.213.
  9. Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164313.
  10. DiBenedetto, A. (2017), The Electronic Properties of Hexagonal Boron Nitride and Graphene Nanoribbons, Ball State University.
  11. DiBenedetto, A. and Khatun, M. (2018), "Electronic properties of edge-terminated zigzag hexagonal boron nitride nanoribbons", J. Phys. D Appl. Phys., 52(2), 025301. https://doi.org/10.1088/1361-6463/aae674.
  12. Du, A.J., Smith, S.C. and Lu, G.Q. (2007), "First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon", Chem. Phys. Lett., 447(4), 181-186. https://doi.org/10.1016/j.cplett.2007.09.038.
  13. Goh, E., Chin, H., Wong, K., Indra, I. and Tan, M. (2018), "Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tight-binding Hamiltonian", J. Nanoelectr. Optoelectr., 13, 289-300. https://doi.org/10.1166/jno.2018.2206.
  14. Goringe, C.M., Bowler, D.R. and Hernandez, E. (1997), "Tight-binding modelling of materials", Reports Prog. Phys., 60(12), 1447-1512. https://doi.org/10.1088/0034-4885/60/12/001.
  15. Guerra, T., Araujo, L.R.S. and Azevedo, S. (2019), "Magnetic and electronic properties of diamond-shaped graphene-boron nitride nanoribbons and nanoflakes", J. Phys. Chem. Solids, 135, 109085. https://doi.org/10.1016/j.jpcs.2019.109085.
  16. Huang, B., Lee, H., Gu, B.L., Liu, F. and Duan, W. (2012), "Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures", Nano Res., 5(1), 62-72. https://doi.org/10.1007/s12274-011-0185-y.
  17. Izyumskaya, N., Demchenko, D.O., Das, S., O zgur, u ., Avrutin, V. and Morkoc, H. (2017), "Recent development of boron nitride towards electronic applications", Adv. Electr. Mater., 3(5), 1600485. https://doi.org/10.1002/aelm.201600485.
  18. Jin, L., Li-Zhong, S. and Jian-Xin, Z. (2010), "Strain effects on electronic properties of boron nitride nanoribbons", Chinese Phys. Lett., 27(7), 077101. https://doi.org/10.1088/0256-307X/27/7/077101.
  19. Kumar, C.V. and Pattammattel, A. (2017), Chapter 1 - Discovery of graphene and beyond, Elsevier.
  20. Lee, S.H. and Jhi, S.H. (2015), "A first-principles study on three-dimensional covalently-bonded hexagonal boron nitride nanoribbons", J. Phys. Condens. Matter., 27(7), 075301. https://doi.org/10.1088/0953-8984/27/7/075301.
  21. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017). "Analytical study of the electronic properties of boron nitride nanosheet", 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 23-25 August.
  22. Lopez-Bezanilla, A., Huang, J., Terrones, H. and Sumpter, B.G. (2012), "Structure and electronic properties of edge-functionalized armchair boron nitride nanoribbons", J. Phys. Chem. C, 116(29), 15675-15681. https://doi.org/10.1021/jp3036583.
  23. Ma, H., Lin, S.H., Carpenter, R.W., Rice, P. and Sankey, O.F. (1993), "Ab initio calculation of band structure, x-ray emission, quantum yield, and electron-energy-loss spectra of hexagonal boron nitride", J. Appl. Phys., 73(11), 7422-7426. https://doi.org/10.1063/1.353983.
  24. Makov, G. and Payne, M.C. (1995), "Periodic boundary conditions in ab initio calculations", Phys. Rev. B, 51(7), 4014-4022. https://doi.org/10.1103/PhysRevB.51.4014.
  25. Morrell, R. (2000), 4.01 - Matrix Materials, Pergamon, Oxford.
  26. Oxtoby, D., Gillis, H. and Butler, L. (2015), Principles of modern chemistry. Cengage Learning, Saunders College Publishing, Fort Worth, Texas, U.S.A.
  27. Park, C.H. and Louie, S.G. (2008), "Energy gaps and stark effect in boron nitride nanoribbons", Nano Lett., 8(8), 2200-2203. https://doi.org/10.1021/nl080695i.
  28. Ribeiro, R.M. and Peres, N.M.R. (2011), "Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description", Phys. Rev. B, 83(23), 235312. https://doi.org/10.1103/PhysRevB.83.235312.
  29. Schrodinger, E. (1926), "An Undulatory Theory of the Mechanics of Atoms and Molecules", Phys. Rev., 28(6), 1049-1070. https://doi.org/10.1103/PhysRev.28.1049.
  30. Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I. and Ajayan, P.M. (2010), "Large scale growth and characterization of atomic hexagonal boron nitride layers", Nano Lett., 10(8), 3209-3215. https://doi.org/10.1021/nl1022139.
  31. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y. (1988), "The tight-binding bond model", J. Phys. C Solid State Phys., 21(1), 35-66. https://doi.org/10.1088/0022-3719/21/1/007.
  32. Tang, S. and Cao, Z. (2010), "Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations", Phys. Chem. Chem. Phys., 12(10), 2313-2320. https://doi.org/10.1039/B920754F.
  33. Watanabe, K., Taniguchi, T. and Kanda, H. (2004), "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal", Nature Mater., 3(6), 404-409. https://doi.org/10.1038/nmat1134.
  34. Xie, Z.X., Tang, L.M., Pan, C.N., Chen, Q. and Chen, K.Q. (2013), "Ballistic thermoelectric properties in boron nitride nanoribbons", J. Appl. Phys., 114(14), 144311. https://doi.org/10.1063/1.4824750.
  35. Zeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y. and Golberg, D. (2010), "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping", Nano Lett., 10(12), 5049-5055. https://doi.org/10.1021/nl103251m
  36. Zhao, K., Zhao, M., Wang, Z. and Fan, Y. (2010), "Tight-binding model for the electronic structures of SiC and BN nanoribbons", Physica E, 43(1), 440-445. https://doi.org/10.1016/j.physe.2010.08.025.
  37. Zheng, F., Sasaki, K.I., Saito, R., Duan, W. and Gu, B.L. (2009), "Edge states of zigzag boron nitride nanoribbons", J. Phys. Soc. Japan, 78(7), 074713. https://doi.org/10.1143/JPSJ.78.074713.
  38. Zheng, F., Zhou, G., Liu, Z., Wu, J., Duan, W., Gu, B.L. and Zhang, S.B. (2008), "Half metallicity along the edge of zigzag boron nitride nanoribbons", Phys. Rev. B, 78(20), 205415. https://doi.org/10.1103/PhysRevB.78.205415.
  39. Zunger, A. (1974), "A molecular calculation of electronic properties of layered crystals. I. Truncated crystal approach for hexagonal boron nitride", J. Phys. C Solid State Phys., 7(1), 76-95. https://doi.org/10.1088/0022-3719/7/1/016.