Acknowledgement
이 논문은 2023년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0021883, 2022년 전기차용 폐배터리 재사용 산업화 기술개발 사업).
References
- E. M. Kim, Greenhouse Gas Reduction in the Global Transportation Sector and Implications: Focusing on the Shipping Sector, The Korea Institute for International Economic Policy (KIEP), Sejong, 2022.
- https://www.iea.org/reports/global-ev-outlook-2023 (retrieved on Nov. 26, 2023).
- L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", J. Power Sources, Vol. 226, pp. 272-288, 2013. https://doi.org/10.1016/j.jpowsour.2012.10.060
- A. Fotouhi, K. Propp, D. J. Auger, and S. Longo, "State of charge and state of health estimation over the battery lifespan," in Behaviour of Lithium-Ion Batteries in Electric Vehicles, G. P. B. Liaw, Eds. Green Energy and Technology, Springer, Cham, pp. 267-288, 2018.
- https://www.consilium.europa.eu/en/press/press-releases/2023/07/10/council-adopts-new-regulation-on-batteries-and-wastebatteries/ (retrieved on Sep. 25, 2023).
- M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van den Bossche, "Critical review of state of health estimation methods of Li-ion batteries for real applications", Renew. Sustain. Energy Rev., Vol. 56, pp. 572-587, 2016. https://doi.org/10.1016/j.rser.2015.11.042
- M. H. Lipu, M. A. Hannan, A. Hussain, M. M. Hoque, P. J. Ker, M. H. M. Saad, and A. Ayob, "A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations", J. Clean. Prod., Vol. 205, pp. 115-133, 2018. https://doi.org/10.1016/j.jclepro.2018.09.065
- Z. Wang, G. Feng, D. Zhen, F. Gu, and A. Ball, "A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles", Energy Reports, Vol. 7, pp. 5141-5161, 2021. https://doi.org/10.1016/j.egyr.2021.08.113
- T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen, and X. Liu, "Data-driven methods for battery soh estimation: Survey and a critical analysis", IEEE Access, Vol. 9, pp. 126903-126916, 2021. https://doi.org/10.1109/ACCESS.2021.3111927
- X. Shu, S. Shen, J. Shen, Y. Zhang, G. Li, Z. Chen, and Y. Liu, "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", IScience, Vol. 24, No. 11, p. 103265(1)-103265(31), 2021.
- X. Hu, F. Feng, K. Liu, L. Zhang, J. Xie, and B. Liu, "State estimation for advanced battery management: Key challenges and future trends", Renew. Sustain. Energy Rev., Vol. 114, p. 109334, 2019.
- D. Xiao, G. Fang, S. Liu, S. Yuan, R. Ahmed, S. Habibi, and A. Emadi, "Reduced-coupling coestimation of SOC and SOH for lithium-ion batteries based on convex optimization", IEEE Trans. Power Electron., Vol. 35, No.11, pp. 12332-12346, 2020. https://doi.org/10.1109/TPEL.2020.2984248
- X. Wei, B. Zhu, and W. Xu, "Internal res is tance identification in vehicle power lithium-ion battery and application in lifetime evaluation", Proc. of 2009 International Conference on Measuring Technology and Mechatronics Automation, pp. 388-392, Zhangjiajie, China, 2009.
- J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, and K. Dietmayer, "State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation", J. Power Sources, Vol. 196, No. 12, pp. 5357-5363, 2011. https://doi.org/10.1016/j.jpowsour.2010.08.035
- W. Waag, C. Fleischer, C. Schaper, J. Berger, and D. Sauer, "Self-adapting on-board diagnostic algorithms for lithium-ion batteries", Proc. of Advanced Battery Development for Automotive and Utility Applications and their Electric Power Grid Integration, pp. 1-17, Aachen, Germany, 2011.
- U.S. Department of Energy Office of Scientific and Technical Information, "PNGV battery test manual", DOE/ID10597, 01 Feb., 2001.
- U. Troltzsch, O. Kanoun, and H. R. Trankler, "Characterizing aging effects of lithium ion batteries by impedance spectroscopy", Electrochim. Acta, Vol. 51, No. 8-9, pp. 1664-1672, 2006. https://doi.org/10.1016/j.electacta.2005.02.148
- P. Bueschel, U. Troeltzsch, and O. Kanoun, "Use of stochastic methods for robust parameter extraction from impedance spectra", Electrochim. Acta, Vol. 56, No. 23, pp. 8069-8077, 2011. https://doi.org/10.1016/j.electacta.2011.01.047
- S. R. Islam, and S. Y. Park, "Precise online electrochemical impedance spectroscopy strategies for Li-ion batteries", IEEE Trans. Ind. Appl., Vol. 56, No. 2, pp. 1661-1669, 2019.
- T. Sarikurt, M. Ceylan, and A. Balikci, "An analytical battery state of health estimation method", Proc. of 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1605-1609, Istanbul, Turkey, 2014.
- K. Goebel, B. Saha, A. Saxena, J. R. Celaya, and J. P. Christophersen, "Prognostics in battery health management", IEEE Instrum. Meas. Mag., Vol. 11, No. 4, pp. 33-40, 2008. https://doi.org/10.1109/MIM.2008.4579269
- X. Feng, J. Li, M. Ouyang, L. Lu, J. Li, and X. He, "Using probability density function to evaluate the state of health of lithium-ion batteries", J. Power Sources, Vol. 232, pp. 209-218, 2013. https://doi.org/10.1016/j.jpowsour.2013.01.018
- B. Saha, S. Poll, K. Goebel, and J. Christophersen, "An integrated approach to battery health monitoring using Bayesian regression and state estimation", Proc. of 2007 IEEE Autotestcon, pp. 646-653, Baltimore, USA, 2007.
- K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries", Appl. Energy, Vol. 86, No. 9, pp. 1506-1511, 2009. https://doi.org/10.1016/j.apenergy.2008.11.021
- A. Nugroho, E. Rijanto, F. D. Wijaya, and P. Nugroho, "Battery state of charge estimation by using a combination of Coulomb Counting and dynamic model with adjusted gain", Proc. of 2015 International Conference on Sustainable Energy Engineering and Application (ICSEEA), pp. 54-58, Bandung, Indonesia, 2015.
- M. B. Lazreg, I. Baccouche, S. Jemmali, B. Manai, and M. Hamouda, "SoC estimation of li-ion battery pack for light electric vehicles using enhanced coulomb counting algorithm", Proc. of 2019 10th International Renewable Energy Congress (IREC), pp. 1-6, Sousse, Tunisia, 2019.
- Z. Guo, X. Qiu, G. Hou, B. Y. Liaw, and C. Zhang, "State of health estimation for lithium ion batteries based on charging curves", J. Power Sources, Vol. 249, pp. 457-462, 2014. https://doi.org/10.1016/j.jpowsour.2013.10.114
- C. Weng, J. Sun, and H. Peng, "A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring", J. Power Sources, Vol. 258, pp. 228-237, 2014. https://doi.org/10.1016/j.jpowsour.2014.02.026
- K. Gyorgy, A. Kelemen, and L. David, "Unscented Kalman filters and particle filter methods for nonlinear state estimation", Procedia Technology, Vol. 12, pp. 65-74, 2014. https://doi.org/10.1016/j.protcy.2013.12.457
- G. L. Plett, "Dual and joint EKF for simultaneous SOC and SOH estimation", Proc. of 21st Electric Vehicle Symposium (EVS21), pp. 1-12, Monaco, 2005.
- J. Kim, and B. H. Cho, "State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system", IEEE Trans. Veh. Technol., Vol. 60, No. 9, pp. 4249-4260, 2011. https://doi.org/10.1109/TVT.2011.2168987
- W. Qiuting, J. Yinzhu, and L. Yunhao, "State of health estimation for lithium-ion battery based on D-UKF", Int. J. Hybrid Inf. Technol., Vol. 8, No. 7, pp. 55-70, 2015. https://doi.org/10.14257/ijhit.2015.8.7.06
- F. Zhu, and J. Fu, "A novel state-of-health estimation for lithium-ion battery via unscented Kalman filter and improved unscented particle filter", IEEE Sens. J., Vol. 21, No. 22, pp. 25449-25456, 2021. https://doi.org/10.1109/JSEN.2021.3102990
- R. Xiong, Y. Zhang, H. He, X. Zhou, and M. G. Pecht, "A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries", IEEE Trans. Industr. Inform., Vol. 65, No. 2, pp. 1526-1538, 2017.
- H. Zhang, Q. Miao, X. Zhang, and Z. Liu, "An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction", Microelectron. Reliab., Vol. 81, pp. 288-298, 2018. https://doi.org/10.1016/j.microrel.2017.12.036
- G. K. Prasad, and C. D. Rahn, "Model based identification of aging parameters in lithium ion batteries", J. Power Sources, Vol. 232, pp. 79-85, 2013. https://doi.org/10.1016/j.jpowsour.2013.01.041
- A. Eddahech, O. Briat, and J. M. Vinassa, "Real-time SOC and SOH estimation for EV Li-ion cell using online parameters identification", Proc. of 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4501-4505, Raleigh, USA, 2012.
- H. W. Liu, W. J. Xu, and C. Guo, "Study on state of health estimation algorithm for lithium power battery used on pure electric vehicle", Adv. Mat. Res., Vol. 608, pp. 1577-1581, 2013.
- D. Liu, Y. Luo, Y. Peng, X. Peng, and M. Pecht, "Lithium-ion battery remaining useful life estimation based on nonlinear AR model combined with degradation feature", Annu. Conf. PHM Soc., Vol. 4, No. 1, pp. 1-7, 2012.
- D. Liu, Y. Luo, J. Liu, Y. Peng, L. Guo, and M. Pecht, "Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm", Neural Comput. Appl., Vol. 25, pp. 557-572, 2014. https://doi.org/10.1007/s00521-013-1520-x
- S. Zhang, B. Zhai, X. Guo, K. Wang, N. Peng, and X. Zhang, "Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks", J. Energy Storage, Vol. 26, p. 100951, 2019.
- Z. Yao, S. Lu, Y. Li, and X. Yi, "Cycle life prediction of lithium ion battery based on DE-BP neural network", Proc. of 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), pp. 137-141, Beijing, China, 2019.
- L. Song, K. Zhang, T. Liang, X. Han, and Y. Zhang, "Intelligent state of health estimation for lithium-ion battery pack based on big data analysis", J. Energy Storage, Vol. 32, p. 101836, 2020.
- W. Liu, Y. Xu, and X. Feng, "A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery", IEEE Trans. Veh. Technol., Vol. 69, No. 12, pp. 14739-14748, 2020. https://doi.org/10.1109/TVT.2020.3037088
- L. Chen, H. Wang, B. Liu, Y. Wang, Y. Ding, and H. Pan, "Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation", Energy, Vol. 215, p. 119078, 2021.
- A. Eddahech, O. Briat, N. Bertrand, J. Y. Deletage, and J. M. Vinassa, "Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks", Int. J. Electr. Power Eng. Syst., Vol. 42, No. 1, pp. 487-494, 2012. https://doi.org/10.1016/j.ijepes.2012.04.050
- Y. Zhang, R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries", IEEE Trans. Veh. Technol., Vol. 67, No. 7, pp. 5695-5705, 2018. https://doi.org/10.1109/TVT.2018.2805189
- P. Li, Z. Zhang, Q. Xiong, B. Ding, J. Hou, D. Luo, Y. Rong, and S. Li, "State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network", J. Power Sources, Vol. 459, p. 228069, 2020.
- L. Ungurean, M. V. Micea, and G. Carstoiu, "Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks", Int. J. Energy Res., Vol. 44, No. 8, pp. 6767-6777, 2020. https://doi.org/10.1002/er.5413
- X. Feng, C. Weng, X. He, X. Han, L. Lu, D. Ren, and M. Ouyang, "Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine", IEEE Trans. Veh. Technol., Vol. 68, No. 9, pp. 8583-8592, 2019. https://doi.org/10.1109/TVT.2019.2927120
- X. Shu, G. Li, J. Shen, Z. Lei, Z. Chen, and Y. Liu, "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization", Energy, Vol. 204, p. 117957, 2020.
- A. Widodo, M. C. Shim, W. Caesarendra, and B. S. Yang, "Intelligent prognostics for battery health monitoring based on sample entropy", Expert Syst. Appl., Vol. 38, No. 9, pp. 11763-11769, 2011. https://doi.org/10.1016/j.eswa.2011.03.063
- S. Jia, B. Ma, W. Guo, and Z. S. Li, "A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine", J. Manuf. Syst., Vol. 61, pp. 773-781, 2021. https://doi.org/10.1016/j.jmsy.2021.03.019
- A. Lamprecht, M. Riesterer, and S. Steinhorst, "Random forest regression of charge balancing data: A state of health estimation method for electric vehicle batteries", Proc. of 2020 International Conference on Omni-layer Intelligent Systems (COINS), pp. 1-6, Barcelona, Spain, 2020.
- K. S. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy, "State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking", J. Power Sources, Vol. 484, p. 229154, 2021.
- Y. Zhang, Z. Peng, Y. Guan, and L. Wu, "Prognostics of battery cycle life in the early-cycle stage based on hybrid model", Energy, Vol. 221, p. 119901, 2021.
- N. Yang, Z. Song, H. Hofmann, and J. Sun, "Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest", J. Energy Storage, Vol. 48, p. 103857, 2022.