DOI QR코드

DOI QR Code

A Survey on Measurement and Estimation Methods for State of Health of EV Lithium-ion Batteries

전기 자동차 리튬-이온 배터리 SOH 측정 및 추정 방법에 대한 조사연구

  • Koog-Hwan Oh (Smart Electrics Research Center, Korea Electronics Technology Institute) ;
  • Hyun-Chang Cho (Smart Electrics Research Center, Korea Electronics Technology Institute)
  • 오국환 (한국전자기술연구원 스마트전장연구센터) ;
  • 조현창 (한국전자기술연구원 스마트전장연구센터)
  • Received : 2023.11.13
  • Accepted : 2023.11.23
  • Published : 2023.11.30

Abstract

Electric vehicles (EVs) have recently been in the spotlight and have been rapidly developed to reduce the carbon emission with respect to the transport sector. Most EVs currently employ lithium-ion batteries (LIBs) as power sources because they have a higher energy density and a lower self-discharge than other batteries. However, the LIBs cannot respond to high power demands when the state of health (SOH) falls below 80%. Therefore, the SOH of the LIBs must be accurately measured or estimated. To date, many methods have been studied and proposed for measuring or estimating the SOH. In this paper, representative methods among them are reclassified and introduced.

Keywords

Acknowledgement

이 논문은 2023년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0021883, 2022년 전기차용 폐배터리 재사용 산업화 기술개발 사업).

References

  1. E. M. Kim, Greenhouse Gas Reduction in the Global Transportation Sector and Implications: Focusing on the Shipping Sector, The Korea Institute for International Economic Policy (KIEP), Sejong, 2022.
  2. https://www.iea.org/reports/global-ev-outlook-2023 (retrieved on Nov. 26, 2023).
  3. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", J. Power Sources, Vol. 226, pp. 272-288, 2013. https://doi.org/10.1016/j.jpowsour.2012.10.060
  4. A. Fotouhi, K. Propp, D. J. Auger, and S. Longo, "State of charge and state of health estimation over the battery lifespan," in Behaviour of Lithium-Ion Batteries in Electric Vehicles, G. P. B. Liaw, Eds. Green Energy and Technology, Springer, Cham, pp. 267-288, 2018.
  5. https://www.consilium.europa.eu/en/press/press-releases/2023/07/10/council-adopts-new-regulation-on-batteries-and-wastebatteries/ (retrieved on Sep. 25, 2023).
  6. M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van den Bossche, "Critical review of state of health estimation methods of Li-ion batteries for real applications", Renew. Sustain. Energy Rev., Vol. 56, pp. 572-587, 2016. https://doi.org/10.1016/j.rser.2015.11.042
  7. M. H. Lipu, M. A. Hannan, A. Hussain, M. M. Hoque, P. J. Ker, M. H. M. Saad, and A. Ayob, "A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations", J. Clean. Prod., Vol. 205, pp. 115-133, 2018. https://doi.org/10.1016/j.jclepro.2018.09.065
  8. Z. Wang, G. Feng, D. Zhen, F. Gu, and A. Ball, "A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles", Energy Reports, Vol. 7, pp. 5141-5161, 2021. https://doi.org/10.1016/j.egyr.2021.08.113
  9. T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen, and X. Liu, "Data-driven methods for battery soh estimation: Survey and a critical analysis", IEEE Access, Vol. 9, pp. 126903-126916, 2021. https://doi.org/10.1109/ACCESS.2021.3111927
  10. X. Shu, S. Shen, J. Shen, Y. Zhang, G. Li, Z. Chen, and Y. Liu, "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", IScience, Vol. 24, No. 11, p. 103265(1)-103265(31), 2021.
  11. X. Hu, F. Feng, K. Liu, L. Zhang, J. Xie, and B. Liu, "State estimation for advanced battery management: Key challenges and future trends", Renew. Sustain. Energy Rev., Vol. 114, p. 109334, 2019.
  12. D. Xiao, G. Fang, S. Liu, S. Yuan, R. Ahmed, S. Habibi, and A. Emadi, "Reduced-coupling coestimation of SOC and SOH for lithium-ion batteries based on convex optimization", IEEE Trans. Power Electron., Vol. 35, No.11, pp. 12332-12346, 2020. https://doi.org/10.1109/TPEL.2020.2984248
  13. X. Wei, B. Zhu, and W. Xu, "Internal res is tance identification in vehicle power lithium-ion battery and application in lifetime evaluation", Proc. of 2009 International Conference on Measuring Technology and Mechatronics Automation, pp. 388-392, Zhangjiajie, China, 2009.
  14. J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, and K. Dietmayer, "State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation", J. Power Sources, Vol. 196, No. 12, pp. 5357-5363, 2011. https://doi.org/10.1016/j.jpowsour.2010.08.035
  15. W. Waag, C. Fleischer, C. Schaper, J. Berger, and D. Sauer, "Self-adapting on-board diagnostic algorithms for lithium-ion batteries", Proc. of Advanced Battery Development for Automotive and Utility Applications and their Electric Power Grid Integration, pp. 1-17, Aachen, Germany, 2011.
  16. U.S. Department of Energy Office of Scientific and Technical Information, "PNGV battery test manual", DOE/ID10597, 01 Feb., 2001.
  17. U. Troltzsch, O. Kanoun, and H. R. Trankler, "Characterizing aging effects of lithium ion batteries by impedance spectroscopy", Electrochim. Acta, Vol. 51, No. 8-9, pp. 1664-1672, 2006. https://doi.org/10.1016/j.electacta.2005.02.148
  18. P. Bueschel, U. Troeltzsch, and O. Kanoun, "Use of stochastic methods for robust parameter extraction from impedance spectra", Electrochim. Acta, Vol. 56, No. 23, pp. 8069-8077, 2011. https://doi.org/10.1016/j.electacta.2011.01.047
  19. S. R. Islam, and S. Y. Park, "Precise online electrochemical impedance spectroscopy strategies for Li-ion batteries", IEEE Trans. Ind. Appl., Vol. 56, No. 2, pp. 1661-1669, 2019.
  20. T. Sarikurt, M. Ceylan, and A. Balikci, "An analytical battery state of health estimation method", Proc. of 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1605-1609, Istanbul, Turkey, 2014.
  21. K. Goebel, B. Saha, A. Saxena, J. R. Celaya, and J. P. Christophersen, "Prognostics in battery health management", IEEE Instrum. Meas. Mag., Vol. 11, No. 4, pp. 33-40, 2008. https://doi.org/10.1109/MIM.2008.4579269
  22. X. Feng, J. Li, M. Ouyang, L. Lu, J. Li, and X. He, "Using probability density function to evaluate the state of health of lithium-ion batteries", J. Power Sources, Vol. 232, pp. 209-218, 2013. https://doi.org/10.1016/j.jpowsour.2013.01.018
  23. B. Saha, S. Poll, K. Goebel, and J. Christophersen, "An integrated approach to battery health monitoring using Bayesian regression and state estimation", Proc. of 2007 IEEE Autotestcon, pp. 646-653, Baltimore, USA, 2007.
  24. K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries", Appl. Energy, Vol. 86, No. 9, pp. 1506-1511, 2009. https://doi.org/10.1016/j.apenergy.2008.11.021
  25. A. Nugroho, E. Rijanto, F. D. Wijaya, and P. Nugroho, "Battery state of charge estimation by using a combination of Coulomb Counting and dynamic model with adjusted gain", Proc. of 2015 International Conference on Sustainable Energy Engineering and Application (ICSEEA), pp. 54-58, Bandung, Indonesia, 2015.
  26. M. B. Lazreg, I. Baccouche, S. Jemmali, B. Manai, and M. Hamouda, "SoC estimation of li-ion battery pack for light electric vehicles using enhanced coulomb counting algorithm", Proc. of 2019 10th International Renewable Energy Congress (IREC), pp. 1-6, Sousse, Tunisia, 2019.
  27. Z. Guo, X. Qiu, G. Hou, B. Y. Liaw, and C. Zhang, "State of health estimation for lithium ion batteries based on charging curves", J. Power Sources, Vol. 249, pp. 457-462, 2014. https://doi.org/10.1016/j.jpowsour.2013.10.114
  28. C. Weng, J. Sun, and H. Peng, "A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring", J. Power Sources, Vol. 258, pp. 228-237, 2014. https://doi.org/10.1016/j.jpowsour.2014.02.026
  29. K. Gyorgy, A. Kelemen, and L. David, "Unscented Kalman filters and particle filter methods for nonlinear state estimation", Procedia Technology, Vol. 12, pp. 65-74, 2014. https://doi.org/10.1016/j.protcy.2013.12.457
  30. G. L. Plett, "Dual and joint EKF for simultaneous SOC and SOH estimation", Proc. of 21st Electric Vehicle Symposium (EVS21), pp. 1-12, Monaco, 2005.
  31. J. Kim, and B. H. Cho, "State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system", IEEE Trans. Veh. Technol., Vol. 60, No. 9, pp. 4249-4260, 2011. https://doi.org/10.1109/TVT.2011.2168987
  32. W. Qiuting, J. Yinzhu, and L. Yunhao, "State of health estimation for lithium-ion battery based on D-UKF", Int. J. Hybrid Inf. Technol., Vol. 8, No. 7, pp. 55-70, 2015. https://doi.org/10.14257/ijhit.2015.8.7.06
  33. F. Zhu, and J. Fu, "A novel state-of-health estimation for lithium-ion battery via unscented Kalman filter and improved unscented particle filter", IEEE Sens. J., Vol. 21, No. 22, pp. 25449-25456, 2021. https://doi.org/10.1109/JSEN.2021.3102990
  34. R. Xiong, Y. Zhang, H. He, X. Zhou, and M. G. Pecht, "A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries", IEEE Trans. Industr. Inform., Vol. 65, No. 2, pp. 1526-1538, 2017.
  35. H. Zhang, Q. Miao, X. Zhang, and Z. Liu, "An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction", Microelectron. Reliab., Vol. 81, pp. 288-298, 2018. https://doi.org/10.1016/j.microrel.2017.12.036
  36. G. K. Prasad, and C. D. Rahn, "Model based identification of aging parameters in lithium ion batteries", J. Power Sources, Vol. 232, pp. 79-85, 2013. https://doi.org/10.1016/j.jpowsour.2013.01.041
  37. A. Eddahech, O. Briat, and J. M. Vinassa, "Real-time SOC and SOH estimation for EV Li-ion cell using online parameters identification", Proc. of 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4501-4505, Raleigh, USA, 2012.
  38. H. W. Liu, W. J. Xu, and C. Guo, "Study on state of health estimation algorithm for lithium power battery used on pure electric vehicle", Adv. Mat. Res., Vol. 608, pp. 1577-1581, 2013.
  39. D. Liu, Y. Luo, Y. Peng, X. Peng, and M. Pecht, "Lithium-ion battery remaining useful life estimation based on nonlinear AR model combined with degradation feature", Annu. Conf. PHM Soc., Vol. 4, No. 1, pp. 1-7, 2012.
  40. D. Liu, Y. Luo, J. Liu, Y. Peng, L. Guo, and M. Pecht, "Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm", Neural Comput. Appl., Vol. 25, pp. 557-572, 2014. https://doi.org/10.1007/s00521-013-1520-x
  41. S. Zhang, B. Zhai, X. Guo, K. Wang, N. Peng, and X. Zhang, "Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks", J. Energy Storage, Vol. 26, p. 100951, 2019.
  42. Z. Yao, S. Lu, Y. Li, and X. Yi, "Cycle life prediction of lithium ion battery based on DE-BP neural network", Proc. of 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), pp. 137-141, Beijing, China, 2019.
  43. L. Song, K. Zhang, T. Liang, X. Han, and Y. Zhang, "Intelligent state of health estimation for lithium-ion battery pack based on big data analysis", J. Energy Storage, Vol. 32, p. 101836, 2020.
  44. W. Liu, Y. Xu, and X. Feng, "A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery", IEEE Trans. Veh. Technol., Vol. 69, No. 12, pp. 14739-14748, 2020. https://doi.org/10.1109/TVT.2020.3037088
  45. L. Chen, H. Wang, B. Liu, Y. Wang, Y. Ding, and H. Pan, "Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation", Energy, Vol. 215, p. 119078, 2021.
  46. A. Eddahech, O. Briat, N. Bertrand, J. Y. Deletage, and J. M. Vinassa, "Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks", Int. J. Electr. Power Eng. Syst., Vol. 42, No. 1, pp. 487-494, 2012. https://doi.org/10.1016/j.ijepes.2012.04.050
  47. Y. Zhang, R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries", IEEE Trans. Veh. Technol., Vol. 67, No. 7, pp. 5695-5705, 2018. https://doi.org/10.1109/TVT.2018.2805189
  48. P. Li, Z. Zhang, Q. Xiong, B. Ding, J. Hou, D. Luo, Y. Rong, and S. Li, "State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network", J. Power Sources, Vol. 459, p. 228069, 2020.
  49. L. Ungurean, M. V. Micea, and G. Carstoiu, "Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks", Int. J. Energy Res., Vol. 44, No. 8, pp. 6767-6777, 2020. https://doi.org/10.1002/er.5413
  50. X. Feng, C. Weng, X. He, X. Han, L. Lu, D. Ren, and M. Ouyang, "Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine", IEEE Trans. Veh. Technol., Vol. 68, No. 9, pp. 8583-8592, 2019. https://doi.org/10.1109/TVT.2019.2927120
  51. X. Shu, G. Li, J. Shen, Z. Lei, Z. Chen, and Y. Liu, "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization", Energy, Vol. 204, p. 117957, 2020.
  52. A. Widodo, M. C. Shim, W. Caesarendra, and B. S. Yang, "Intelligent prognostics for battery health monitoring based on sample entropy", Expert Syst. Appl., Vol. 38, No. 9, pp. 11763-11769, 2011. https://doi.org/10.1016/j.eswa.2011.03.063
  53. S. Jia, B. Ma, W. Guo, and Z. S. Li, "A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine", J. Manuf. Syst., Vol. 61, pp. 773-781, 2021. https://doi.org/10.1016/j.jmsy.2021.03.019
  54. A. Lamprecht, M. Riesterer, and S. Steinhorst, "Random forest regression of charge balancing data: A state of health estimation method for electric vehicle batteries", Proc. of 2020 International Conference on Omni-layer Intelligent Systems (COINS), pp. 1-6, Barcelona, Spain, 2020.
  55. K. S. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy, "State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking", J. Power Sources, Vol. 484, p. 229154, 2021.
  56. Y. Zhang, Z. Peng, Y. Guan, and L. Wu, "Prognostics of battery cycle life in the early-cycle stage based on hybrid model", Energy, Vol. 221, p. 119901, 2021.
  57. N. Yang, Z. Song, H. Hofmann, and J. Sun, "Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest", J. Energy Storage, Vol. 48, p. 103857, 2022.