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AN ALGEBRAIC STRUCTURE INDUCED BY A FUZZY

BI-PARTIALLY ORDERED SPACE I†

JU-MOK OH

Abstract. We introduce an algebraic structure induced by a fuzzy bi-

partial order on a complete residuated lattices with the double negative

law. We undertake an investigation into the properties of fuzzy bi-partial
orders, including their various characteristics and features. We demon-

strate that the two families of l-stable and r-stable fuzzy sets can be re-

garded as complete lattices, and we establish that these two families are
anti-isomorphic. Furthermore, we provide two examples related to them.
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1. Introduction

The concept of a complete residuated lattice was first introduced by Ward et
al. [18] as a means of extending the notion of a left-continuous t-conorm, with
applications in many-valued logic [8, 9, 10]. Building on this work, Bělohl’avek [1,
2] introduced the concept of formal concepts with R ∈ LX×Y defined on a
complete residuated lattice. Let R ∈ LX×Y be a fuzzy information system. A
formal fuzzy concept is a pair (A,B) ∈ LX × LY such that F (A) = B and
G(B) = A where F : LX → LY , G : LY → LX are defined by

F (A)(y) =
∧
x∈X

[A(x) → R(x, y)] and G(B)(x) =
∧
y∈Y

[B(y) → R(x, y)] .

Many researchers developed various fuzzy concepts, information systems and
decision rules on complete residuated lattices [3, 4, 11, 12, 13, 14, 15].
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Urquhart [17] defined two maps l : P (X) → P (X) and r : P (X) → P (X) on
a bounded lattice (X,∨,∧, 0, 1) by

l(A) = {x ∈ X | (∀y ∈ X) x ≤1 y ⇒ y ̸∈ A} ,
r(A) = {x ∈ X | (∀y ∈ X) x ≤2 y ⇒ y ̸∈ A}

where A ⊆ X. In his work, he demonstrated that a bounded lattice’s dual space
can be regarded as a doubly ordered topological space. This perspective leads
to the development of numerous representation theorems for various algebraic
structures [5, 6, 7, 16].

In this paper, the investigation is carried out on a fuzzy bi-partially ordered
space

(
X, e1X , e2X

)
defined on a complete residuated lattice (L,≤,∨,∧,⊙,→,⊥,⊤)

with the double negative law, rather than on a doubly ordered set
(
X, e1X , e2X

)
defined on a bounded lattice (X,∨,∧,⊥,⊤). We define two maps l : LX → LX

and r : LX → LX by

l(A)(x) =
∧

y∈X

[
e1X(x, y) → n(A)(y)

]
,

r(A)(x) =
∧

y∈X

[
e2X(x, y) → n(A)(y)

]
where n(A)(y) = A(y) → ⊥.

In Theorem 3.5, we demonstrates that L
(
LX

)
= {A ∈ LX | A = l(r(A))}

and R
(
LX

)
= {B ∈ LX | B = r(l(A))} are both complete lattices under certain

suitable operations and they are anti-isomorphic. This result can be regarded as
one of the important implications for the understanding of algebraic structures
induced by fuzzy bi-partial orders on complete residuated lattices. Example 3.6
serves to provide a concrete instantiation of the theoretical concepts presented in
this study, thereby enriching the reader’s understanding of the subject matter.
Example 3.7 provides a concrete illustration of these concepts in action, as we
define a fuzzy bi-partially ordered space

(
X, e1X , e2X

)
in the context of a fuzzy

information system LX×Y , where X represents a set of objects and Y a set of
attributes.

2. Preliminaries

Definition 2.1. [8, 9, 10, 18] An algebra (L,∧,∨,⊙,→,⊥,⊤) is called a com-
plete residuated lattice if it satisfies the following conditions:
(L1) (L,≤,∨,∧,⊥,⊤) is a complete lattice with the greatest element ⊤ and the
least element ⊥,
(L2) (L,⊙,⊤) is a commutative monoid with identity ⊤,
(L3) the residuation property, i.e., x ⊙ y ≤ z if and only if x ≤ y → z for all
x, y, z ∈ L.

Let (L,∧,∨,⊙,→,⊥,⊤) be a complete residuated lattice. Define n : L → L
by n(x) = x → ⊥ for all x ∈ L.

The condition n(n(x)) = x for all x ∈ L is called the double negative law.
Let α ∈ L and A ∈ LX . Define three maps (αX → A), (αX⊙A), αX : X → L

by (αX → A)(x) = α → A(x), (αX ⊙A)(x) = α⊙A(x) and αX(x) = α.
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In this paper, we always assume that (L,∧,∨,⊙,→,⊥,⊤, n) is a complete
residuated lattice with the double negative law.

Lemma 2.2. [8, 9, 10, 18] Let x, y, z, w ∈ L. Let {xi}i∈Γ, {yi}i∈Γ ⊆ L. Then
the following hold.
(1) ⊤ → x = x, ⊥⊙ x = ⊥.
(2) If y ≤ z, then x⊙ y ≤ x⊙ z, x → y ≤ x → z and z → x ≤ y → x.
(3) x ≤ y if and only if x → y = ⊤.
(4) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi).

(5) (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(6) x⊙ (

∨
i∈Γ yi) =

∨
i∈Γ(x⊙ yi).

(7) (x⊙ y) → z = x → (y → z) = y → (x → z) and y ≤ x → x⊙ y.
(8) (x → y)⊙ (z → w) ≤ (x⊙ z) → (y ⊙ w) and x → y ≤ (x⊙ z) → (y ⊙ z).
(9) (x → y)⊙ (y → z) ≤ x → z and (x → y)⊙ z ≤ x → (y ⊙ z).
(10)

∧
i∈Γ(xi → yi) ≤

∨
i∈Γ xi →

∨
i∈Γ yi and

∧
i∈Γ(xi → yi) ≤

∧
i∈Γ xi →∧

i∈Γ yi.
(11) x → y ≤ (y → z) → (x → z) and x → y ≤ (z → x) → (z → y).
(12) n(x⊙ n(y)) = x → y and x → y = n(y) → n(x).
(13) x → (y → z) = n(z) → (y → n(x)).
(14) n

(∨
i∈Γ xi

)
=

∧
i∈Γ n (xi) and n

(∧
i∈Γ xi

)
=

∨
i∈Γ n (xi).

Definition 2.3. [8, 9, 10, 18] Let X be a set. A map eX : X ×X → L is called:
(E1) reflexive if eX(x, x) = ⊤ for all x ∈ X,
(E2) transitive if eX(x, y)⊙ eX(y, z) ≤ eX(x, z) for all x, y, z ∈ X,
(E3) if eX(x, y) = eX(y, x) = ⊤ where x, y ∈ X, then x = y.

If eX satisfies (E1),(E2) and (E3), eX is called a fuzzy partial order. Let
e1X and e2X be fuzzy partial orders on X. Then

(
X, e1X , e2X

)
is called a fuzzy

bi-partially ordered space.

Remark 2.1. [8, 9, 10, 18] Define eL : L × L → L by eL(x, y) = x → y. By
Lemma 2.2(5) and (6), one can see that eL is a fuzzy partial order.

Let τ ⊆ LX . Define eτ : τ × τ → L by eτ (A,B) =
∧

x∈X [A(x) → B(x)].
Then eτ is a fuzzy partial order.

Definition 2.4. [12, 14, 15] (1) Let τ ⊆ LX . τ is called an Alexandrov topology
on X if it satisfies the following two conditions:
(A1)

∨
i∈I Ai,

∧
i∈I Ai ∈ τ for all {Ai}i∈I ⊆ τ ,

(A2) αX → A,αX ⊙A ∈ τ for all α ∈ L and A ∈ τ .
The pair (X, τ) is called an Alexandrov topological space on X.

3. algebraic structurea induced by fuzzy bi-partially ordered spaces

Definition 3.1. Let (X, e1X , e2X) be a fuzzy bi-partially ordered space. Define
two maps l : LX → LX and r : LX → LX by

l(A)(x) =
∧
y∈X

[
e1X(x, y) → n(A)(y)

]
, r(A)(x) =

∧
y∈X

[
e2X(x, y) → n(A)(y)

]
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where n(A)(y) = n(A(y)) = A(y) → ⊥.
(1) A fuzzy set A ∈ LX is called l-stable if lr(A) = A.
(2) A fuzzy set A ∈ LX is called r-stable if rl(A) = A.
(3) The family of all l-stable fuzzy sets will be denoted by L

(
LX

)
.

(4) The family of all r-stable fuzzy sets will be denoted by R
(
LX

)
.

Consider a fuzzy partially ordered space (X, eX). The inverse e−1
X of eX is

defined as follows:

e−1
X : X ×X → L by e−1

X (x, y) = eX(y, x).

Theorem 3.2. Let (X, eX) be a fuzzy partially ordered space. Let

τeX =
{
A ∈ LX | A(x)⊙ eX(x, y) ≤ A(y) for all x, y ∈ X

}
.

Then the following hold.
(1) τeX is an Alexandrov topology.
(2) Let A ∈ LX . Then A ∈ τeX if and only if

∨
x∈X [A(x)⊙ eX(x, y)] = A(y)

for all y ∈ X if and only if
∧

y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X.

(3) Let τe−1
X

=
{
A ∈ LX | A(x)⊙ e−1

X (x, y) ≤ A(y) for all x, y ∈ X
}
. Then

τe−1
X

= {n(A) | A ∈ τeX} .

(4) Let A ∈ LX and z ∈ X. Then eX(z,−), [αX → eX(z,−)], [eX(−, z) → αX ],∨
z∈X [eX(z,−)⊙A(z)],

∧
z∈X [eX(−, z) → n(A)(z)] ∈ τeX .

Proof. (1) (A1) Let {Ai}i∈Γ ⊆ τeX . Then(∧
i∈Γ Ai

)
(x)⊙ eX(x, y) =

∧
i∈Γ Ai(x)⊙ eX(x, y)

≤
∧

i∈Γ [Ai(x)⊙ eX(x, y)]
≤

∧
i∈Γ Ai(y) since Ai ∈ τeX

=
(∧

i∈Γ Ai

)
(y)

and(∨
i∈Γ Ai

)
(x)⊙ eX(x, y) =

∨
i∈Γ Ai(x)⊙ eX(x, y)

=
∨

i∈Γ [Ai(x)⊙ eX(x, y)] by Lemma 2.2(6)
≤

∨
i∈Γ Ai(y) since Ai ∈ τeX

=
(∨

i∈Γ Ai

)
(y).

Hence
∧

i∈Γ Ai,
∨

i∈Γ ∈ τeX .
(A2) Let A ∈ τeX and α ∈ L. Then

[αX → A] (x)⊙ eX(x, y) = [α → A(x)]⊙ eX(x, y)
= α → [A(x)⊙ eX(x, y)] by Lemma 2.2(9)
≤ α → A(y) since A ∈ τeX
= [αX → A] (y)

and

[αX ⊙A] (x)⊙ eX(x, y) = [α⊙A(x)]⊙ eX(x, y) = α⊙ [A(x)⊙ eX(x, y)]
≤ α⊙A(y) since A ∈ τeX
= [αX ⊙A] (y).
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Hence αX → A,αX ⊙A ∈ τeX .
Therefore τeX is an Alexandrov topology.

(2) Assume A ∈ τeX . Then A(x) ⊙ eX(x, y) ≤ A(y) for all x, y ∈ X, and so∨
x∈X [A(x)⊙ eX(x, y)] ≤ A(y) for all y ∈ X. On the other hand, we have∨
x∈X [A(x)⊙ eX(x, y)] ≥ A(y)⊙ eX(y, y) = A(y). Thus∨

x∈X [A(x)⊙ eX(x, y)] = A(y) for all y ∈ X.

Assume that
∨

x∈X [A(x)⊙ eX(x, y)] = A(y) for all y ∈ X. Then A(x) ⊙
eX(x, y) ≤ A(y) for all y ∈ X, and so A ∈ τeX .

Hence the first equivalent statement is proved.
Assume A ∈ τeX . Then A(x)⊙ eX(x, y) ≤ A(y) for all x, y ∈ X. By residua-

tion, A(x) ≤ eX(x, y) → A(y) for all x, y ∈ X, and so

A(x) ≤
∧

y∈X [eX(x, y) → A(y)] for all x ∈ X.

On the other hand,
∧

y∈X [eX(x, y) → A(y)] ≤ eX(x, x) → A(x) = A(x). Hence∧
y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X.

Assume that
∧

y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X. Then A(x) ≤
eX(x, y) → A(y) for all x, y ∈ X. By residuation, eX(x, y)⊙A(x) ≤ A(y) for all
x, y ∈ X, and so A ∈ τeX .

Hence the second equivalent statement is proved.
(3) ”⊇“: Let A ∈ τeX . Then A(x)⊙ eX(x, y) ≤ A(y) for all x, y ∈ X, and so

A(x) ≤ eX(x, y) → A(y) by residuation
= n (eX(x, y)⊙ n(A)(y)) by Lemma 2.2(12).

Now, by Lemma 2.2(2), n (eX(x, y)⊙ n(A)(y)) → ⊥ ≤ A(x) → ⊥. By the
double negative law, eX(x, y)⊙n(A)(y) ≤ n(A)(x), and so n(A)(y)⊙e−1

X (y, x) ≤
n(A)(x). Hence n(A) ∈ τe−1

X
.

”⊆“: Let B ∈ τe−1
X
. Since n(n(B)) = B by the double negative law, it is

enough to show that n(B) ∈ τeX . Since B ∈ τe−1
X
, we have B(x) ⊙ e−1

X (x, y) ≤
B(y), and so B(x)⊙ eX(y, x) ≤ B(y). Then

B(x) ≤ eX(y, x) → B(y) by residuation
= n (eX(y, x)⊙ n(B)(y)) by Lemma 2.2(12).

By Lemma 2.2(2) and the double negative law, we have eX(y, x) ⊙ n(B)(y) ≤
n(B)(x), and so n(B)(y)⊙ eX(y, x) ≤ n(B)(x). Hence n(B) ∈ τeX .
(4) Let A ∈ LX and z ∈ X. We show eX(z,−) ∈ τeX . For all x, y ∈ X,
eX(z, x)⊙ eX(x, y) ≤ eX(z, y) by (E2). Hence eX(z,−) ∈ τeX .

We show [αX → eX(z,−)] ∈ τeX . For all x, y ∈ X,

[αX → eX(z,−)] (x)⊙ eX(x, y) = [α → eX(z, x)]⊙ eX(x, y)
≤ α → [eX(z, x)⊙ eX(x, y)] by Lemma 2.2(9)
≤ α → eX(z, y) by (E2)
= [αX → eX(z,−)] (y).

Hence [αX → eX(z,−)] ∈ τeX .
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We show [eX(−, z) → αX ] ∈ τeX . For all x, y ∈ X,

[eX(−, z) → αX ]⊙ eX(x, y)⊙ eX(y, z) ≤ [eX(x, z) → α]⊙ eX(x, z) by (E2)
≤ α.

By residuation,

[eX(−, z) → αX ] (x)⊙ eX(x, y) ≤ eX(y, z) → α = [eX(−, z) → αX ] (y).

Hence [eX(−, z) → αX ] ∈ τeX .
We show

∨
z∈X [eX(z,−)⊙A(z)] ∈ τeX . For all x, y ∈ X,∨

z∈X [eX(z,−)⊙A(z)] (x)⊙ eX(x, y) =
∨

z∈X [eX(z, x)⊙A(z)]⊙ eX(x, y)
=

∨
z∈X [[eX(z, x)⊙ eX(x, y)]⊙A(z)]

≤
∨

z∈X [eX(z, y)⊙A(z)] by (E2)
=

∨
z∈X [eX(z,−)⊙A(z)] (y).

Hence
∨

z∈X [eX(z,−)⊙A(z)] ∈ τeX .
We show

∧
z∈X [eX(−, z) → n(A)(z)] ∈ τeX . For all x, y, w ∈ X,∧

z∈X [eX(−, z) → n(A)(z)] (x)⊙ eX(x, y)⊙ eX(y, w)
≤

∧
z∈X [eX(x, z) → n(A)(z)]⊙ eX(x,w) by (E2)

≤ [eX(x,w) → n(A)(w)]⊙ eX(x,w)
≤ n(A)(w).

By residuation,
∧

z∈X [eX(−, z) → n(A)(z)] (x)⊙eX(x, y) ≤ eX(y, w) → n(A)(w)
for all x, y, w ∈ X, and so∧

z∈X [eX(−, z) → n(A)(z)] (x)⊙ eX(x, y) ≤
∧

w∈X [eX(y, w) → n(A)(w)]
=

∧
w∈X [eX(−, w) → n(A)(w)] (y).

Hence
∧

z∈X [eX(−, z) → n(A)(z)] ∈ τeX . □

Consider a fuzzy bi-partially ordered space
(
X, e1X , e2X

)
. To simplify the no-

tation, we shall denote the inverse of e1X and e2X by e−1
X and e−2

X , respectively.

Theorem 3.3. Let
(
X, e1X , e2X

)
be a fuzzy bi-partially ordered space. Then the

following hold.
(1) Let A,B ∈ LX . Then eLX (A,B) ≤ eLX (l(B), l(A)) and eLX (A,B) ≤
eLX (r(B), r(A)). In particular, if A ≤ B, then l(B) ≤ l(A) and r(B) ≤ r(A).
(2) Let A ∈ LX . Then l(A) ∈ τe1X , r(A) ∈ τe2X , l(A) ≤ n(A) and r(A) ≤ n(A).

(3) If A ∈ τe1X , then A ≤ l(r(A)). Similarly, if A ∈ τe2X , then A ≤ r(l(A)).

(4) L(LX) = {l(r(A)) | A ∈ LX} and R(LX) = {r(l(A)) | A ∈ LX}.
(5) If A ∈ L

(
LX

)
, then r(A) ∈ R

(
LX

)
. Similarly, if A ∈ R

(
LX

)
, then

l(A) ∈ L
(
LX

)
.

(6) If {Ai}i∈Γ ⊆ L
(
LX

)
, A ∈ L

(
LX

)
and α ∈ L, then

∧
i∈Γ Ai, αX → A ∈

L
(
LX

)
. Similarly, if {Ai}i∈Γ ⊆ R

(
LX

)
, A ∈ R

(
LX

)
and α ∈ L, then∧

i∈Γ Ai, αX → A ∈ R
(
LX

)
.
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Proof. (1) Let A,B ∈ LX . Then

eLX (l(B), l(A))

=
∧

x∈X

[∧
y∈X

[
e1X(x, y) → n(B)(y)

]
→

∧
y∈X

[
e1X(x, y) → n(A)(y)

]]
≥

∧
x∈X

∧
y∈X

[[
e1X(x, y) → n(B)(y)

]
→

[
e1X(x, y) → n(A)(y)

]]
≥

∧
x∈X

∧
y∈X [n(B)(y) → n(A)(y)] by Lemma 2.2(11)

=
∧

x∈X

∧
y∈X [A(y) → B(y)] by Lemma 2.2(12)

= eLX (A,B)

and

eLX (r(B), r(A))

=
∧

x∈X

[∧
y∈X

[
e2X(x, y) → n(B)(y)

]
→

∧
y∈X

[
e2X(x, y) → n(A)(y)

]]
≥

∧
x∈X

∧
y∈X

[[
e2X(x, y) → n(B)(y)

]
→

[
e2X(x, y) → n(A)(y)

]]
≥

∧
x∈X

∧
y∈X [n(B)(y) → n(A)(y)] by Lemma 2.2(11)

=
∧

x∈X

∧
y∈X [A(y) → B(y)] by Lemma 2.2(12)

= eLX (A,B).

Hence eLX (A,B) ≤ eLX (l(B), l(A)) and eLX (A,B) ≤ eLX (r(B), r(A)).
Assume that A ≤ B. Then ⊤ = eLX (A,B) ≤ eLX (l(B), l(A)), and so ⊤ =

eLX (l(B), l(A)). Hence l(B) ≤ l(A). Similarly, ⊤ = eLX (A,B) ≤ eLX (r(B), r(A)),
and so ⊤ = eLX (r(B), r(A)). Hence l(B) ≤ l(A).
(2) By Theorem 3.2(2), we have

l(A) =
∧

y∈X

[
e1X(−, y) → n(A)(y)

]
∈ τe1X ,

r(A) =
∧

y∈X

[
e2X(−, y) → n(A)(y)

]
∈ τe2X .

Note that

l(A)(x) =
∧

y∈X

[
e1X(x, y) → n(A)(y)

]
≤ e1X(x, x) → n(A)(x) = n(A)(x),

r(A)(x) =
∧

y∈X

[
e2X(x, y) → n(A)(y)

]
≤ e2X(x, x) → n(A)(x) = n(A)(x).

Hence l(A) ≤ n(A) and r(A) ≤ n(A).
(3) Let A ∈ τe1X . Then

lr(A)(x) =
∧

y∈X

[
e1X(x, y) → n(r(A))(y)

]
=

∧
y∈X

[
e1X(x, y) → n

(∧
w∈X

[
e2X(y, w) → n(A)(w)

])]
=

∧
y∈X

[
e1X(x, y) → n

(∧
w∈X n

(
e2X(y, w)⊙A(w)

))]
=

∧
y∈X

[
e1X(x, y) →

∨
w∈X

[
e2X(y, w)⊙A(w)

]]
by Lemma 2.2(14)

≥
∧

y∈X

[
e1X(x, y) →

[
e2X(y, y)⊙A(y)

]]
=

∧
y∈X

[
e1X(x, y) → A(y)

]
= A(x) by Theorem 3.2(2).

Hence A ≤ lr(A).
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Let A ∈ τe2X . Then

rl(A)(x) =
∧

y∈X

[
e2X(x, y) → n (l(A)) (y)

]
=

∧
y∈X

[
e2X(x, y) → n

(∧
w∈X

[
e1X(y, w) → n(A)(w)

])]
=

∧
y∈X

[
e2X(x, y) → n

(∧
w∈X n

(
e1X(y, w)⊙A(w)

))]
=

∧
y∈X

[
e2X(x, y) →

∨
w∈X

[
e1X(y, w)⊙A(w)

]]
by Lemma 2.2(14)

≥
∧

y∈X

[
e2X(x, y) →

[
e1X(y, y)⊙A(y)

]]
=

∧
y∈X

[
e2X(x, y) → ⊙A(y)

]
= A(x) by Theorem 3.2(2).

Hence A ≤ rl(A).
(4) Let L1

(
LX

)
= {l(r(A)) | A ∈ LX}.

“L
(
LX

)
⊇ L1

(
LX

)
”: Let A ∈ LX . Since r(A) ∈ τe2X by (2), we have by

(3) that r(A) ≤ rlr(A). Now, by (1), we have lrlr(A) ≤ lr(A). On the other
hand, since lr(A) ∈ τe1X by (2), we have by (3) that lr(A) ≤ lrlr(A). Hence

lr(A) ∈ L
(
LX

)
.

“L
(
LX

)
⊆ L1

(
LX

)
”: Let A ∈ L

(
LX

)
. Then A = lr(A), and so A ∈

L1

(
LX

)
.

Let R1

(
LX

)
= {rl(A) | A ∈ LX}.

“R
(
LX

)
⊇ R1

(
LX

)
”: Let A ∈ LX . Since l(A) ∈ τe1X by (2), we have by (3)

that l(A) ≤ lrl(A). Now, by (1), rlrl(A) ≤ rl(A). On the other hand, since
rl(A) ∈ τe2X by (2), we have by (3) that rl(A) ≤ rlrl(A). Hence rlrl(A) = rl(A),

and so rl(A) ∈ R
(
LX

)
.

“R
(
LX

)
⊆ R1

(
LX

)
”: Let A ∈ R

(
LX

)
. Then A = rl(A), and so A ∈

R1

(
LX

)
.

(5) Let A ∈ L
(
LX

)
. Since lr(A) = A, we have rlr(A) = r(A), and so r(A) ∈

R
(
LX

)
.

Let A ∈ R
(
LX

)
. Since rl(A) = A, we have lrl(A) = l(A), and so l(A) ∈

L
(
LX

)
.

(6) Let {Ai}i∈Γ ⊆ L
(
LX

)
. Then Ai = lr(Ai) ∈ τe1X by (2). Since τe1X is an

Alexandrov topology, we have
∧

i∈Γ Ai ∈ τe1X . Then
∧

i∈Γ Ai ≤ lr
(∧

i∈Γ Ai

)
by

(3). On the other hand, for all i ∈ Γ,

Ai = lr(Ai) ≥ lr
(∧

i∈Γ Ai

)
since lr is increasing by (1),

and so
∧

i∈Γ Ai ≥ lr
(∧

i∈Γ Ai

)
. Hence lr

(∧
i∈Γ Ai

)
=

∧
i∈Γ Ai and

∧
i∈Γ Ai ∈

L
(
LX

)
.

Let A ∈ L
(
LX

)
and α ∈ L. Then A = lr(A) ∈ τe1X by (2). Since τe1X is an

Alexandrov topology, αX → A ∈ τe1X . Then lr(αX → A) ≥ αX → A by (3).
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On the other hand, note that

r (αX → A) (x) =
∧

y∈X

[
e2X(x, y) → n (αX → A) (y)

]
=

∧
y∈X

[
e2X(x, y) → [α⊙ n(A)(y)]

]
by Lemma 2.2(12)

≥
∧

y∈X

[[
e2X(x, y) → n(A)(y)

]
⊙ α

]
by Lemma 2.2(9)

≥
∧

y∈X

[
e2X(x, y) → n(A)(y)

]
⊙ α

= r(A)(x)⊙ α.

Then lr (αX → A) ≤ l (r(A)⊙ αX). Furthermore,

l (r(A)⊙ αX) (x) =
∧

y∈X

[
e1X(x, y) → n (r(A)⊙ αX) (y)

]
=

∧
y∈X

[
e1X(x, y) → [α → n (r(A)) (y)]

]
by Lemma 2.2(12)

=
∧

y∈X

[
α →

[
e1X(x, y) → n (r(A)) (y)

]]
by Lemma 2.2(7)

= α →
∧

y∈X

[
e1X(x, y) → n (r(A)) (y)

]
by Lemma 2.2(4)

= α → lr(A)(x)
= α → A(x) since A ∈ L

(
LX

)
= (αX → A) (x).

Hence lr (αX → A) ≤ l (r(A)⊙ αX) = αX → A.
Therefore lr (αX → A) = αX → A and αX → A ∈ L

(
LX

)
.

Let {Ai}i∈Γ ⊆ R
(
LX

)
. Then Ai = rl(Ai) ∈ τe2X by (2). Since τe2X is an

Alexandrov topology,
∧

i∈Γ Ai ∈ τe2X . Then rl
(∧

i∈Γ Ai

)
∈ τe2X by (3).

On the other hand, for all i ∈ Γ,

Ai = rl(Ai) ≥ rl
(∧

i∈Γ Ai

)
since rl is increasing by (1),

and so
∧

i∈Γ Ai ≥ rl
(∧

i∈Γ Ai

)
. Hence rl

(∧
i∈Γ Ai

)
=

∧
i∈Γ Ai and

∧
i∈Γ Ai ∈

R
(
LX

)
.

Let A ∈ R
(
LX

)
and α ∈ L. Then A = rl(A) ∈ τe2X by (2). Since τe2X is an

Alexandrov topology, αX → A ∈ τe2X . Then rl (αX → A) ≥ αX → A.

On the other hand, note that

l (αX → A) (x) =
∧

y∈X

[
e1X(x, y) → n (αX → A) (y)

]
=

∧
y∈X

[
e1X(x, y) → [α⊙ n(A)(y)]

]
by Lemma 2.2(12)

≥
∧

y∈X

[[
e1X(x, y) → n(A)(y)

]
⊙ α

]
≥

∧
y∈X

[
e1X(x, y) → n(A)(y)

]
⊙ α

= l(A)(x)⊙ α.

Then rl (αX → A) ≤ r (l(A)⊙ αX). Furthermore,

r (l(A)⊙ αX) (x) =
∧

y∈X

[
e2X(x, y) → n (l(A)⊙ αX) (y)

]
=

∧
y∈X

[
e2X(x, y) → [α → n (l(A)) (y)]

]
by Lemma 2.2(12)

=
∧

y∈X

[
α →

[
e2X(x, y) → n (l(A)) (y)

]]
by Lemma 2.2(7)

= α →
∧

y∈X

[
e2X(x, y) → n (l(A)) (y)

]
by Lemma 2.2(4)

= α → rl(A)(x) = α → A(x) since A ∈ R
(
LX

)
= (αX → A) (x).

Hence rl(αX → A) ≤ r (l(A)⊙ αX) ≤ αX → A.
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Therefore rl (αX → A) = αX → A and αX → A ∈ R
(
LX

)
. □

Definition 3.4. Let (L1,≤,∧,∨) and (L2,≤,∧,∨) be complete lattices. L1 and
L2 are anti-isomorphic if there exists a bijective map h : L1 → L2 such that

h
(∨

i∈I xi

)
=

∧
i∈I h (xi) andh

(∧
i∈I xi

)
=

∨
i∈I h (xi) for all {xi}i∈Γ ⊆ L1.

Theorem 3.5. Let (X, e1X , e2X) be a fuzzy bi-partially ordered space. Let l and
r be the maps defined in Definition 3.1. The the following hold.
(1)

(
L
(
LX

)
,
∧
,⊔l,⊥X ,⊤X

)
is a complete lattice where(∧

i∈Γ Ai

)
(x) =

∧
i∈Γ Ai(x) and

(
⊔l
i∈ΓAi

)
(x) = l

(∧
i∈Γ r (Ai)

)
(x)

for all {Ai}i∈Γ ⊆ L
(
LX

)
.

(2)
(
R
(
LX

)
,
∧
,⊔r,⊥X ,⊤X

)
is a complete lattice where(∧

i∈Γ Ai

)
(x) =

∧
i∈Γ Ai(x) and

(
⊔r
i∈ΓAi

)
(x) = r

(∧
i∈Γ l (Ai)

)
(x)

for all {Ai}i∈Γ ⊆ R
(
LX

)
.

(3) L
(
LX

)
and R

(
LX

)
are anti-isomorphic.

Proof. (1) Let {Ai}i∈Γ ⊆ L
(
LX

)
. We first show ⊔i∈ΓAi ∈ L(LX). Since

l
(∧

i∈Γ r(Ai)
)

∈ τe1X by Theorem 3.2(2), we have by Theorem 3.2(3) that

l
(∧

i∈Γ r(Ai)
)
≤ lrl

(∧
i∈Γ r(Ai)

)
. On the other hand, since r(Ai) ∈ τe2X by The-

orem 3.3(2) and τe2X is an Alexandrov topology, we have
∧

i∈Γ r(Ai) ∈ τe2X . Now,

by Theorem 3.3(3), rl
(∧

i∈Γ r(Ai)
)
≥

∧
i∈Γ r(Ai). Since l is decreasing by Theo-

rem 3.3(1), we have lrl
(∧

i∈Γ r(Ai)
)
≤ l

(∧
i∈Γ r(Ai)

)
. Hence lrl

(∧
i∈Γ r(Ai)

)
=

l
(∧

i∈Γ r(Ai)
)
and l

(∧
i∈Γ r(Ai)

)
∈ L

(
LX

)
.

We show that l
(∧

i∈Γ r(Ai)
)
is an upper bound of {Ai}i∈Γ. Since

∧
i∈Γ r(Ai) ≤

r(Ai) for all i ∈ Γ and l is decreasing by Theorem 3.3(1), we have lr(Ai) ≤
l
(∧

i∈Γ r(Ai)
)
. Since Ai ∈ L

(
LX

)
, we have lr(Ai) = Ai. Hence we have

Ai ≤ l
(∧

i∈Γ r(Ai)
)
.

We now show that l
(∧

i∈Γ r(Ai)
)
is the supremum of {Ai}i∈Γ. Assume that

Ai ≤ B for all i ∈ Γ where B ∈ L
(
LX

)
. Then r(B) ≤ r(Ai) for all i ∈

Γ, and so r(B) ≤
∧

i∈Γ r(Ai). Since l is decreasing by Theorem 3.3(1), we

have l
(∧

i∈Γ r(Ai)
)
≤ lr(B). Since B ∈ L

(
LX

)
, we have lr(B) = B. Hence

l
(∧

i∈Γ r(Ai)
)
≤ B.

Therefore ⊔l
i∈ΓAi is the supremum of {Ai}i∈Γ in L

(
LX

)
.

(2) Let {Ai}i∈Γ ⊆ R
(
LX

)
. We first show that ⊔r

i∈ΓAi ∈ R
(
LX

)
. Since

r
(∧

i∈Γ l(Ai)
)

∈ τe2X by Theorem 3.3(2), we have by Theorem 3.3(3) that

r
(∧

i∈Γ l(Ai)
)
≤ rlr

(∧
i∈Γ l(Ai)

)
. On the other hand, since l(Ai) ∈ τe1X by

Theorem 3.3(1) and τe1X is an Alexandrov topology, we have
∧

i∈Γ l(Ai) ∈ τe1X .

Now, by Theorem 3.3(3), we have
∧

i∈Γ l(Ai) ≤ lr
(∧

i∈Γ l(Ai)
)
. Since r is de-

creasing by Theorem 3.3(1), we have rlr
(∧

i∈Γ l(Ai)
)
≤ r

(∧
i∈Γ l(Ai)

)
. Hence

rlr
(∧

i∈Γ l(Ai)
)
= r

(∧
i∈Γ l(Ai)

)
and r

(∧
i∈Γ l(Ai)

)
∈ R

(
LX

)
.
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We show that r
(∧

i∈Γ l(Ai)
)
is an upper bound of {Ai}i∈Γ. Since

∧
i∈Γ l(Ai) ≤

l(Ai) for all i ∈ Γ and r is decreasing by Theorem 3.3(1), we have rl(Ai) ≤
r
(∧

i∈Γ l(Ai)
)
for all i ∈ Γ. Since Ai ∈ R

(
LX

)
, we have rl(Ai) = Ai. Hence

Ai ≤ r
(∧

i∈Γ l(Ai)
)
for all i ∈ Γ.

We now show that r
(∧

i∈Γ l(Ai)
)
is the supremum of {Ai}i∈Γ. Assume that

Ai ≤ B for all i ∈ Γ where B ∈ R
(
LX

)
. Then l(B) ≤ l(Ai) for all i ∈ Γ,

and so l(B) ≤
∧

i∈Γ l(Ai). Since r is decreasing by Theorem 3.3(1), we have

r
(∧

i∈Γ l(Ai)
)
≤ rl(B) = B. Hence r

(∧
i∈Γ l(Ai)

)
≤ B.

Therefore ⊔r
i∈ΓAi is the supremum of {Ai}i∈Γ in R

(
LX

)
.

(3) Define r1 : L
(
LX

)
→ R

(
LX

)
by

r1(A)(x) =
∧

y∈X

[
e2X(x, y) → n(A)(y)

]
.

We first show that r1 is well-defined. Let A ∈ L
(
LX

)
. Then lr(A) = A. Since

rlr1(A) = rlr(A) = r(A) = r1(A), we have r1(A) ∈ R
(
LX

)
. Hence r1 is well-

defined.
We show that r1 is injective. Assume that r1(A) = r1(B) where A,B ∈

L
(
LX

)
. Then A = lr(A) = lr1(A) = lr1(B) = lr(B) = B. Hence r1 is injective.

We show that r1 is surjective. Let C ∈ R
(
LX

)
. Then rl(C) = C and

l(C) ∈ L
(
LX

)
by Theorem 3.3(5). Moreover, C = rl(C) = r1(l(C)). Hence r1

is surjective.
Let {Ai}i∈Γ ⊆ L

(
LX

)
. Since r(Ai) ∈ R

(
LX

)
by Theorem 3.3(5), we have

by Theorem 3.3(6) that
∧

i∈Γ r(Ai) ∈ R
(
LX

)
. Now, note that

r1
(
⊔l
i∈ΓAi

)
= rl

(∧
i∈Γ r(Ai)

)
=

∧
i∈Γ r1(Ai)

and

r1
(∧

i∈Γ Ai

)
= r

(∧
i∈Γ lr(Ai)

)
= r

(∧
i∈Γ l(r1(Ai))

)
= ⊔r

i∈Γr1(Ai).

Therefore L
(
LX

)
and R

(
LX

)
are anti-isomorphic. □

Example 3.6. Let (X,≤,∧,∨⊥,⊤) be a bounded lattice. Let ([0, 1],⊙,→, n, 0, 1)
be the complete residuated lattice with the double negative law where

x⊙ y = max{0, x+ y − 1}, x → y = min{1− x+ y, 1} and n(x) = 1− x.

Define two maps e1, e2 : X ×X → [0, 1] by

e1(x, y) =

{
1, if x = y,
0, if x ̸= y

and e2(x, y) =

{
1, if x ≤ y,
0, if x ̸≤ y.

Let e−i : X×X → [0, 1] be the map defined by e−i(x, y) = ei(x, y) where i = 1, 2.
Then one can see that ei and e−i are fuzzy partial orders where i = 1, 2. By
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Theorem 3.2, one can see that

τe1 =
{
A ∈ [0, 1]X | A =

∨
x∈X

[
A(x)⊙ e1(x,−)

]}
= [0, 1]X = τe−1 ,

τe2 =
{
A ∈ LX | A =

∨
x∈X

[
A(x)⊙ e2(x,−)

]}
=

{
A ∈ LX | A =

∨
x≤− A(x)

}
=

{
A ∈ LX | if x ≤ y, then A(x) ≤ A(y)

}
,

τe−2 =
{
A ∈ LX | if x ≤ y, then A(y) ≤ A(x)

}
.

(1) Consider the fuzzy partially ordered space
(
X, e1, e−1

)
. Let l and r be the

maps defined in Definition 3.1. Then

l(A)(x) =
∧

y∈X

[
e1(x, y) → n(A)(y)

]
= e1(x, x) → n(A)(x) = n(A)(x),

r(A)(x) =
∧

y∈X

[
e−1(x, y) → n(A)(y)

]
= e−1(x, x) → n(A)(x) = n(A)(x).

Let A ∈ τe1 = [0, 1]X and B ∈ τe−1 = [0, 1]X . Then A = lr(A) and B = rl(B).
Let {Ai}i∈Γ ⊆ τe1 = [0, 1]X and {Bi}i∈Γ ⊆ τe−1 = [0, 1]X . Define ⊔l

i∈ΓAi =

l
(∧

i∈Γ r(Ai)
)
and ⊔r

i∈ΓBi = r
(∧

i∈Γ l(Bi)
)
. Then

⊔l
i∈ΓAi = l

(∧
i∈Γ r(Ai)

)
= n

(∧
i∈Γ n(Ai)

)
=

∨
i∈Γ Ai,

⊔r
i∈ΓBi = r

(∧
i∈Γ l(Bi)

)
= n

(∧
i∈Γ n(Bi)

)
=

∨
i∈Γ Bi.

Moreover,

L
(
[0, 1]X

)
=

{
A ∈ [0, 1]X | lr(A) = A

}
= [0, 1]X ,

R
(
[0, 1]X

)
=

{
B ∈ [0, 1]X | rl(A) = A

}
= [0, 1]X .

By Theorem 3.5,
(
[0, 1]X ,

∧
,⊔l =

∨
, 0X , 1X

)
and

(
[0, 1]X ,

∧
,⊔r =

∨
, 0X , 1X

)
are complete lattices which are anti-isomorphic.
(2) Consider the fuzzy partially ordered space

(
X, e1, e2

)
. Let l and r be the

maps defined in Definition 3.1. Then

l(A)(x) =
∧

y∈X

[
e1(x, y) → n(A)(y)

]
= n(A)(x),

r(A)(x) =
∧

y∈X

[
e2(x, y) → n(A)(y)

]
=

∧
x≤y
y∈X

n(A)(y).

Let A ∈ [0, 1]X = τe1 . Then

lr(A)(x) = nr(A)(x) by (1)

= n
(∧

x≤y
y∈X

n(A)(y)
)

=
∨

x≤y
y∈X

A(y) by Lemma 2.2(14).

Now, by Theorem 3.3(4), we have

L
(
[0, 1]X

)
=

{
A ∈ [0, 1]X | A =

∨
−≤y
y∈X

A(y)
}

=
{
A ∈ [0, 1]X | if x ≤ y, then A(y) ≤ A(x)

}
.

Let B ∈ [0, 1]X . Then

rl(B)(x) = r (n(B)) (x) by (1)
=

∧
x≤y
y∈X

B(y).
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Now, by Theorem 3.3(4), we have

R
(
[0, 1]X

)
=

{
B ∈ [0, 1]X | B =

∧
−≤y
y∈X

B(y)
}

=
{
B ∈ [0, 1]X | if x ≤ y, then B(x) ≤ B(y)

}
= τe2 by (1).

For all {Ai}i∈Γ ⊆ L
(
[0, 1]X

)
, define ⊔l

i∈ΓAi(x) = l
(∧

i∈Γ r(Ai)
)
(x) (see The-

orem 3.5). Then

⊔l
i∈ΓAi(x) = l

(∧
i∈Γ r(Ai)

)
(x) = n

(∧
i∈Γ r(Ai)

)
(x) by (1)

= n
(∧

i∈Γ

∧
x≤y
y∈X

n(Ai)(y)
)

=
∨

i∈Γ

∨
x≤y
y∈X

Ai(y) by Lemma 2.2(14)

=
∨

i∈Γ Ai(x) since Ai is decreasing.

Now, by Theorem 3.5(1),
(
L
(
[0, 1]X

)
,
∧
,⊔l =

∨
, 0X , 1X

)
is a complete lattice.

For all {Bi}i∈Γ ⊆ R
(
[0, 1]X

)
, define ⊔r

i∈ΓBi(x) = r (l(Bi)) (x) (see Theo-
rem 3.5). Then

⊔r
i∈ΓBi(x) = r

(∧
i∈Γ l(Bi)

)
(x) = r

(∧
i∈Γ n(Bi)

)
(x) by (1)

= r
(
n
(∨

i∈Γ Bi

))
(x) by Lemma 2.2(14)

=
∧

x≤y
y∈X

(∨
i∈Γ Bi

)
(y)

=
∨

i∈Γ Bi(x) since Bi is increasing.

Now, by Theorem 3.5(2),
(
R
(
[0, 1]X

)
,
∧
,⊔r =

∨
, 0X , 1X

)
is a complete lattice.

Define r1 : L
(
[0, 1]X

)
→ R

(
[0, 1]X

)
by r1(A)(x) =

∧
y∈X

[
e2(x, y) → n(A)(y)

]
.

Then

r1(A)(x) =
∧

x≤y
y∈X

n(A)(y) = n(A)(x) since n(A) is increasing.

By Theorem 3.5, r1
(
⊔l
i∈ΓAi

)
=

∧
i∈Γ r1(Ai) and r1

(∧
i∈Γ Ai

)
= ⊔r

i∈Γr1(Ai)

for all {Ai}i∈Γ ⊆ L
(
[0, 1]X

)
. Furthermore, L

(
[0, 1]X

)
and R

(
[0, 1]X

)
are anti-

isomorphic.
(3) Consider the fuzzy partially ordered space

(
X, e2, e−2

)
. Let l and r be the

maps defined in Definition 3.1. Then

l(A)(x) =
∧

y∈X

[
e2(x, y) → n(A)(y)

]
=

∧
x≤y
y∈X

n(A)(y),

r(A)(x) =
∧

y∈X

[
e−2(x, y) → n(A)(y)

]
=

∧
y≤x
y∈X

n(A)(y).

Let A ∈ [0, 1]X . Then

lr(A)(x) =
∧

x≤y
y∈X

n(r(A))(y) = n
(∨

x≤y
y∈X

r(A)(y)
)

= n
(∨

x≤y
y∈X

∨
z≤y
z∈X

n(A)(z)
)
=

∧
x≤y
y∈X

∧
z≤y
z∈X

A(z).

Hence

L
(
[0, 1]X

)
=

{
A ∈ [0, 1]X | if x ≤ y, then A(x) ≤ A(y)

}
= τe2 .
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Let B ∈ [0, 1]X . Then

rl(B)(x) =
∧

y≤x
y∈X

nl(B)(y) = n
(∨

y≤x
y∈X

l(B)(y)
)

= n
(∨

y≤x
y∈X

∧
y≤z
z∈X

n(B)(z)
)
=

∧
y≤x
y∈X

∨
y≤z
z∈X

B(z).

Hence

R
(
[0, 1]X

)
=

{
B ∈ [0, 1]X | if x ≤ y, then B(y) ≤ B(x)

}
= τe−2 .

For all {Ai}i∈Γ ⊆ L
(
[0, 1]X

)
, define ⊔l

i∈ΓAi(x) = l
(∧

i∈Γ r(Ai)
)
(x) (see The-

orem 3.5). Then

⊔l
i∈ΓAi(x) = l

(∧
i∈Γ r(Ai)

)
(x) = n

(∧
i∈Γ n(Ai)

)
(x) =

∨
i∈Γ Ai(x).

By Theorem 3.5,
(
L
(
[0, 1]X

)
,
∧
,⊔l =

∨
, 0X , 1X

)
is a complete lattice.

For all {Bi}i∈Γ ⊆ R
(
[0, 1]X

)
, define ⊔r

i∈ΓBi(x) = r
(∧

i∈Γ l(Ai)
)
(x) (see

Theorem 3.5). Then

⊔r
i∈ΓBi(x) = r

(∧
i∈Γ l(Ai)

)
(x) = n

(∧
i∈Γ n(Ai)

)
(x) =

∨
i∈Γ Bi(x).

By Theorem 3.5,
(
R
(
[0, 1]X

)
,
∧
,⊔r =

∨
, 0X , 1X

)
is a complete lattice. More-

over,
(
L
(
[0, 1]X

)
,
∧
,⊔l =

∨
, 0X , 1X

)
and

(
R
(
[0, 1]X

)
,
∧
,⊔r =

∨
, 0X , 1X

)
are

anti-isomorphic by Theorem 3.5.

Example 3.7. Let X = {h1, h2, h3} be the set. Let Y = {e, b, w, c, i} be
the set with hi =“house”, e =“expensive”, b =“beautiful”, w =“wooden”,
c =“creative” and i =“in the green surroundings”. Let ([0, 1],⊙,→, n, 0, 1) be
the complete residuated lattice defined in Example 3.6. Let R : X × Y → [0, 1]
be the fuzzy information defined as follows:

R e b w c i
h1 0.1 0.5 0.6 0.3 0.7
h2 0.8 0.1 0.9 0.8 0.5
h3 0.4 0.9 0.4 0.5 0.3

Define e1, e2 : X ×X → [0, 1] by

e1 (hi, hj) =
∧

x∈{e,b,w} [R (hi, x) → R (hj , x)] ,

e2 (hi, hj) =
∧

x∈{c,i} [R (hi, x) → R (hj , x)] .

Then
e1 h1 h2 h3

h1 1 0.6 0.8
h2 0.3 1 0.5
h3 0.6 0.2 1

and

e2 h1 h2 h3

h1 1 0.8 0.6
h2 0.5 1 0.7
h3 0.8 1 1

One can see that (X, e1, e2) is a fuzzy bi-partially ordered space.
(1) Let A = (A(h1), A(h2), A(h3)) = (0.7, 0.4, 0.1) ∈ [0, 1]X . Since

0.5 = A(h1)⊙ e1(h1, h3) ̸≤ A(h3) = 0.1,
0.5 = A(h1)⊙ e2(h1, h2) ̸≤ A(h2) = 0.4,
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we have A /∈ τe1 and A /∈ τe2 . A tedious computation gives us that l(A) =
(0.3, 0.6, 0.7), r(A) = (0.3, 0.6, 0.5), lr(A) = (0.7, 0.4, 0.5), rl(A) = (0.6, 0.4, 0.3),
lrl(A) = (0.4, 0.6, 0.7), rlrl(A) = (0.6, 0.4, 0.3) and lrlrl(A) = (0.4, 0.6, 0.7).
Then one can see that rlr(A) = r(A), l(A) ̸= lrl(A), A ̸∈ L (L(X)) and A ̸∈
R (L(X)). Moreover, r(A), rl(A) ∈ R (L(X)) and lr(A), lrl(A) ∈ L (L(X)).
Hence

r(A) ⊔r rl(A) = r [l(r(A)) ∧ l(rl(A))] = r [(0.7, 0.4, 0.5) ∧ (0.4, 0.6, 0.7)]
= r(0.4, 0.4, 0.5) = (0.6, 0.6, 0.5),

lr(A) ⊔l lrl(A) = l [r(lr(A)) ∧ r(lrl(A))] = l [(0.3, 0.6, 0.5)] ∧ (0.6, 0.4, 0.3)]
= l(0.3, 0.4, 0.3) = (0.7, 0.6, 0.7).

(2) Let A = (0.7, 0.4, 0.1) ∈ [0, 1]X (see (1)). Let B = (0.3, 0.8, 0.5) ∈ [0, 1]X .
Then one can see that B ∈ τe1 and B ∈ τe2 .

A tedious computation gives us that l(B) = (0.6, 0.2, 0.5), r(B) = (0.4, 0.2, 0.2),
lr(B) = (0.6, 0.8, 0.8), rl(B) = (0.4, 0.8, 0.5), lrl(B) = (0.6, 0.2, 0.5) and rlr(B) =
(0.4, 0.2, 0.2). Then lrl(B) = l(B), rlr(B) = r(B), l(B) ∈ L (L(X)) and
r(B) ∈ R (L(X)). Hence

r(A) ⊔r r(B) = r [l(r(A)) ∧ l(r(B))] = r [(0.7, 0.4, 0.5) ∧ (0.6, 0.8, 0.8)]
= r(0.6, 0.4, 0.5) = (0.4, 0.6, 0.5),

lr(A) ⊔l l(B) = l [r(lr(A)) ∧ r(l(B))] = l [(0.3, 0.6, 0.5) ∧ (0.4, 0.8, 0.5)]
= l(0.3, 0.6, 0.5) = (0.7, 0.4, 0.5),

lr(A) ⊔l lr(B) = l [r(lr(A)) ∧ r(lr(B))] = l [(0.3, 0.6, 0.5) ∧ (0.4, 0.2, 0.2)]
= l(0.3, 0.2, 0.2) = (0.7, 0.8, 0.8).

By Theorem 3.5,
(
L
(
[0, 1]X

)
,
∧
,⊓l, 0X , 1X

)
and

(
R
(
[0, 1]X

)
,
∧
,⊓r, 0X , 1X

)
are complete lattices, which are anti-isomorphic.

4. Conclusion

The present study focused on introducing an algebraic structure that is in-
duced by a fuzzy bi-partial order on a complete residuated lattice with the double
negative law. Specifically, we demonstrated that the two families of l-stable and
r-stable fuzzy sets can be regarded as complete lattices, and we established that
these two families are anti-isomorphic. Furthermore, we provided examples of
such orders within the context of an information system. We hope that this
study represents a valuable contribution to the field of mathematics and has the
potential to inform future research in this area.

In forthcoming times, there is a potential for further exploration of a variety of
theoretical properties of fuzzy bi-partially ordered spaces on complete residuated
lattices with the double negative law.
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