# AN ALGEBRAIC STRUCTURE INDUCED BY A FUZZY BI-PARTIALLY ORDERED SPACE I ${ }^{\dagger}$ 

JU-MOK OH


#### Abstract

We introduce an algebraic structure induced by a fuzzy bipartial order on a complete residuated lattices with the double negative law. We undertake an investigation into the properties of fuzzy bi-partial orders, including their various characteristics and features. We demonstrate that the two families of $l$-stable and $r$-stable fuzzy sets can be regarded as complete lattices, and we establish that these two families are anti-isomorphic. Furthermore, we provide two examples related to them.

AMS Mathematics Subject Classification : 03E72, 54A40, 54B10. Key words and phrases : Complete residuated lattices, fuzzy bi-partial orders, Alexandrov topologies, $l$-stable fuzzy sets, $r$-stable fuzzy sets.


## 1. Introduction

The concept of a complete residuated lattice was first introduced by Ward et al. [18] as a means of extending the notion of a left-continuous $t$-conorm, with applications in many-valued logic [8, 9, 10]. Building on this work, Bělohl'avek [1, 2] introduced the concept of formal concepts with $R \in L^{X \times Y}$ defined on a complete residuated lattice. Let $R \in L^{X \times Y}$ be a fuzzy information system. A formal fuzzy concept is a pair $(A, B) \in L^{X} \times L^{Y}$ such that $F(A)=B$ and $G(B)=A$ where $F: L^{X} \rightarrow L^{Y}, G: L^{Y} \rightarrow L^{X}$ are defined by

$$
F(A)(y)=\bigwedge_{x \in X}[A(x) \rightarrow R(x, y)] \text { and } G(B)(x)=\bigwedge_{y \in Y}[B(y) \rightarrow R(x, y)]
$$

Many researchers developed various fuzzy concepts, information systems and decision rules on complete residuated lattices $[3,4,11,12,13,14,15]$.

[^0]Urquhart [17] defined two maps $l: P(X) \rightarrow P(X)$ and $r: P(X) \rightarrow P(X)$ on a bounded lattice $(X, \vee, \wedge, 0,1)$ by

$$
\begin{aligned}
l(A) & =\left\{x \in X \mid(\forall y \in X) x \leq_{1} y \Rightarrow y \notin A\right\}, \\
r(A) & =\left\{x \in X \mid(\forall y \in X) x \leq_{2} y \Rightarrow y \notin A\right\}
\end{aligned}
$$

where $A \subseteq X$. In his work, he demonstrated that a bounded lattice's dual space can be regarded as a doubly ordered topological space. This perspective leads to the development of numerous representation theorems for various algebraic structures $[5,6,7,16]$.

In this paper, the investigation is carried out on a fuzzy bi-partially ordered space $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ defined on a complete residuated lattice $(L, \leq, \vee, \wedge, \odot, \rightarrow, \perp, \top)$ with the double negative law, rather than on a doubly ordered set $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ defined on a bounded lattice $(X, \vee, \wedge, \perp, \top)$. We define two maps $l: L^{X} \rightarrow L^{X}$ and $r: L^{X} \rightarrow L^{X}$ by

$$
\begin{aligned}
l(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right] \\
r(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right]
\end{aligned}
$$

where $n(A)(y)=A(y) \rightarrow \perp$.
In Theorem 3.5, we demonstrates that $L\left(L^{X}\right)=\left\{A \in L^{X} \mid A=l(r(A))\right\}$ and $R\left(L^{X}\right)=\left\{B \in L^{X} \mid B=r(l(A))\right\}$ are both complete lattices under certain suitable operations and they are anti-isomorphic. This result can be regarded as one of the important implications for the understanding of algebraic structures induced by fuzzy bi-partial orders on complete residuated lattices. Example 3.6 serves to provide a concrete instantiation of the theoretical concepts presented in this study, thereby enriching the reader's understanding of the subject matter. Example 3.7 provides a concrete illustration of these concepts in action, as we define a fuzzy bi-partially ordered space $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ in the context of a fuzzy information system $L^{X \times Y}$, where $X$ represents a set of objects and $Y$ a set of attributes.

## 2. Preliminaries

Definition 2.1. $[8,9,10,18]$ An algebra $(L, \wedge, \vee, \odot, \rightarrow, \perp, \top)$ is called a complete residuated lattice if it satisfies the following conditions:
(L1) $(L, \leq, \vee, \wedge, \perp, \top)$ is a complete lattice with the greatest element $\top$ and the least element $\perp$,
(L2) $(L, \odot, \top)$ is a commutative monoid with identity $\top$,
(L3) the residuation property, i.e., $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ for all $x, y, z \in L$.

Let $(L, \wedge, \vee, \odot, \rightarrow, \perp, \top)$ be a complete residuated lattice. Define $n: L \rightarrow L$ by $n(x)=x \rightarrow \perp$ for all $x \in L$.

The condition $n(n(x))=x$ for all $x \in L$ is called the double negative law.
Let $\alpha \in L$ and $A \in L^{X}$. Define three maps $\left(\alpha_{X} \rightarrow A\right),\left(\alpha_{X} \odot A\right), \alpha_{X}: X \rightarrow L$ by $\left(\alpha_{X} \rightarrow A\right)(x)=\alpha \rightarrow A(x),\left(\alpha_{X} \odot A\right)(x)=\alpha \odot A(x)$ and $\alpha_{X}(x)=\alpha$.

In this paper, we always assume that $(L, \wedge, \vee, \odot, \rightarrow, \perp, \top, n)$ is a complete residuated lattice with the double negative law.

Lemma 2.2. [8, 9, 10, 18] Let $x, y, z, w \in L$. Let $\left\{x_{i}\right\}_{i \in \Gamma},\left\{y_{i}\right\}_{i \in \Gamma} \subseteq$ L. Then the following hold.
(1) $\top \rightarrow x=x, \perp \odot x=\perp$.
(2) If $y \leq z$, then $x \odot y \leq x \odot z, x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(3) $x \leq y$ if and only if $x \rightarrow y=\mathrm{T}$.
(4) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$.
(5) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(6) $x \odot\left(\bigvee_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \odot y_{i}\right)$.
(7) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$ and $y \leq x \rightarrow x \odot y$.
(8) $(x \rightarrow y) \odot(z \rightarrow w) \leq(x \odot z) \rightarrow(y \odot w)$ and $x \rightarrow y \leq(x \odot z) \rightarrow(y \odot z)$.
(9) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$ and $(x \rightarrow y) \odot z \leq x \rightarrow(y \odot z)$.
(10) $\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right) \leq \bigvee_{i \in \Gamma} x_{i} \rightarrow \bigvee_{i \in \Gamma} y_{i}$ and $\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right) \leq \bigwedge_{i \in \Gamma} x_{i} \rightarrow$ $\bigwedge_{i \in \Gamma} y_{i}$.
(11) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$ and $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$.
(12) $n(x \odot n(y))=x \rightarrow y$ and $x \rightarrow y=n(y) \rightarrow n(x)$.
(13) $x \rightarrow(y \rightarrow z)=n(z) \rightarrow(y \rightarrow n(x))$.
(14) $n\left(\bigvee_{i \in \Gamma} x_{i}\right)=\bigwedge_{i \in \Gamma} n\left(x_{i}\right)$ and $n\left(\bigwedge_{i \in \Gamma} x_{i}\right)=\bigvee_{i \in \Gamma} n\left(x_{i}\right)$.

Definition 2.3. $[8,9,10,18]$ Let $X$ be a set. A map $e_{X}: X \times X \rightarrow L$ is called:
(E1) reflexive if $e_{X}(x, x)=\top$ for all $x \in X$,
(E2) transitive if $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$ for all $x, y, z \in X$,
(E3) if $e_{X}(x, y)=e_{X}(y, x)=\top$ where $x, y \in X$, then $x=y$.
If $e_{X}$ satisfies (E1),(E2) and (E3), $e_{X}$ is called a fuzzy partial order. Let $e_{X}^{1}$ and $e_{X}^{2}$ be fuzzy partial orders on $X$. Then $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ is called a fuzzy bi-partially ordered space.

Remark 2.1. [8, 9, 10, 18] Define $e_{L}: L \times L \rightarrow L$ by $e_{L}(x, y)=x \rightarrow y$. By Lemma $2.2(5)$ and (6), one can see that $e_{L}$ is a fuzzy partial order.

Let $\tau \subseteq L^{X}$. Define $e_{\tau}: \tau \times \tau \rightarrow L$ by $e_{\tau}(A, B)=\bigwedge_{x \in X}[A(x) \rightarrow B(x)]$. Then $e_{\tau}$ is a fuzzy partial order.

Definition 2.4. $[12,14,15](1)$ Let $\tau \subseteq L^{X} . \tau$ is called an Alexandrov topology on $X$ if it satisfies the following two conditions:
(A1) $\bigvee_{i \in I} A_{i}, \bigwedge_{i \in I} A_{i} \in \tau$ for all $\left\{A_{i}\right\}_{i \in I} \subseteq \tau$,
(A2) $\alpha_{X} \rightarrow A, \alpha_{X} \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
The pair $(X, \tau)$ is called an Alexandrov topological space on $X$.

## 3. algebraic structurea induced by fuzzy bi-partially ordered spaces

Definition 3.1. Let $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ be a fuzzy bi-partially ordered space. Define two maps $l: L^{X} \rightarrow L^{X}$ and $r: L^{X} \rightarrow L^{X}$ by

$$
l(A)(x)=\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right], \quad r(A)(x)=\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right]
$$

where $n(A)(y)=n(A(y))=A(y) \rightarrow \perp$.
(1) A fuzzy set $A \in L^{X}$ is called $l$-stable if $\operatorname{lr}(A)=A$.
(2) A fuzzy set $A \in L^{X}$ is called $r$-stable if $r l(A)=A$.
(3) The family of all $l$-stable fuzzy sets will be denoted by $L\left(L^{X}\right)$.
(4) The family of all $r$-stable fuzzy sets will be denoted by $R\left(L^{X}\right)$.

Consider a fuzzy partially ordered space $\left(X, e_{X}\right)$. The inverse $e_{X}^{-1}$ of $e_{X}$ is defined as follows:

$$
e_{X}^{-1}: X \times X \rightarrow L \text { by } e_{X}^{-1}(x, y)=e_{X}(y, x)
$$

Theorem 3.2. Let $\left(X, e_{X}\right)$ be a fuzzy partially ordered space. Let

$$
\tau_{e_{X}}=\left\{A \in L^{X} \mid A(x) \odot e_{X}(x, y) \leq A(y) \text { for all } x, y \in X\right\}
$$

Then the following hold.
(1) $\tau_{e_{X}}$ is an Alexandrov topology.
(2) Let $A \in L^{X}$. Then $A \in \tau_{e_{X}}$ if and only if $\bigvee_{x \in X}\left[A(x) \odot e_{X}(x, y)\right]=A(y)$ for all $y \in X$ if and only if $\bigwedge_{y \in X}\left[e_{X}(x, y) \rightarrow A(y)\right]=A(x)$ for all $x \in X$.
(3) Let $\tau_{e_{X}^{-1}}=\left\{A \in L^{X} \mid A(x) \odot e_{X}^{-1}(x, y) \leq A(y)\right.$ for all $\left.x, y \in X\right\}$. Then

$$
\tau_{e_{X}^{-1}}=\left\{n(A) \mid A \in \tau_{e_{X}}\right\}
$$

(4) Let $A \in L^{X}$ and $z \in X$. Then $e_{X}(z,-),\left[\alpha_{X} \rightarrow e_{X}(z,-)\right]$, $\left[e_{X}(-, z) \rightarrow \alpha_{X}\right]$, $\bigvee_{z \in X}\left[e_{X}(z,-) \odot A(z)\right], \bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right] \in \tau_{e_{X}}$.
Proof. (1) (A1) Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq \tau_{e_{X}}$. Then

$$
\begin{aligned}
\left(\bigwedge_{i \in \Gamma} A_{i}\right)(x) \odot e_{X}(x, y) & =\bigwedge_{i \in \Gamma} A_{i}(x) \odot e_{X}(x, y) \\
& \leq \bigwedge_{i \in \Gamma}\left[A_{i}(x) \odot e_{X}(x, y)\right] \\
& \leq \bigwedge_{i \in \Gamma} A_{i}(y) \text { since } A_{i} \in \tau_{e_{X}} \\
& =\left(\bigwedge_{i \in \Gamma} A_{i}\right)(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\bigvee_{i \in \Gamma} A_{i}\right)(x) \odot e_{X}(x, y) & =\bigvee_{i \in \Gamma} A_{i}(x) \odot e_{X}(x, y) \\
& =\bigvee_{i \in \Gamma}\left[A_{i}(x) \odot e_{X}(x, y)\right] \quad \text { by Lemma } 2.2(6) \\
& \leq \bigvee_{i \in \Gamma} A_{i}(y) \text { since } A_{i} \in \tau_{e_{X}} \\
& =\left(\bigvee_{i \in \Gamma} A_{i}\right)(y)
\end{aligned}
$$

Hence $\bigwedge_{i \in \Gamma} A_{i}, \bigvee_{i \in \Gamma} \in \tau_{e_{X}}$.
(A2) Let $A \in \tau_{e_{X}}$ and $\alpha \in L$. Then

$$
\begin{aligned}
{\left[\alpha_{X} \rightarrow A\right](x) \odot e_{X}(x, y) } & =[\alpha \rightarrow A(x)] \odot e_{X}(x, y) \\
& =\alpha \rightarrow\left[A(x) \odot e_{X}(x, y)\right] \text { by Lemma } 2.2(9) \\
& \leq \alpha \rightarrow A(y) \text { since } A \in \tau_{e_{X}} \\
& =\left[\alpha_{X} \rightarrow A\right](y)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\alpha_{X} \odot A\right](x) \odot e_{X}(x, y) } & =[\alpha \odot A(x)] \odot e_{X}(x, y)=\alpha \odot\left[A(x) \odot e_{X}(x, y)\right] \\
& \leq \alpha \odot A(y) \quad \text { since } A \in \tau_{e_{X}} \\
& =\left[\alpha_{X} \odot A\right](y) .
\end{aligned}
$$

Hence $\alpha_{X} \rightarrow A, \alpha_{X} \odot A \in \tau_{e_{X}}$.
Therefore $\tau_{e_{X}}$ is an Alexandrov topology.
(2) Assume $A \in \tau_{e_{X}}$. Then $A(x) \odot e_{X}(x, y) \leq A(y)$ for all $x, y \in X$, and so $\bigvee_{x \in X}\left[A(x) \odot e_{X}(x, y)\right] \leq A(y)$ for all $y \in X$. On the other hand, we have $\bigvee_{x \in X}\left[A(x) \odot e_{X}(x, y)\right] \geq A(y) \odot e_{X}(y, y)=A(y)$. Thus

$$
\bigvee_{x \in X}\left[A(x) \odot e_{X}(x, y)\right]=A(y) \text { for all } y \in X
$$

Assume that $\bigvee_{x \in X}\left[A(x) \odot e_{X}(x, y)\right]=A(y)$ for all $y \in X$. Then $A(x) \odot$ $e_{X}(x, y) \leq A(y)$ for all $y \in X$, and so $A \in \tau_{e_{X}}$.

Hence the first equivalent statement is proved.
Assume $A \in \tau_{e_{X}}$. Then $A(x) \odot e_{X}(x, y) \leq A(y)$ for all $x, y \in X$. By residuation, $A(x) \leq e_{X}(x, y) \rightarrow A(y)$ for all $x, y \in X$, and so

$$
A(x) \leq \bigwedge_{y \in X}\left[e_{X}(x, y) \rightarrow A(y)\right] \text { for all } x \in X
$$

On the other hand, $\bigwedge_{y \in X}\left[e_{X}(x, y) \rightarrow A(y)\right] \leq e_{X}(x, x) \rightarrow A(x)=A(x)$. Hence $\bigwedge_{y \in X}\left[e_{X}(x, y) \rightarrow A(y)\right]=A(x)$ for all $x \in X$.

Assume that $\bigwedge_{y \in X}\left[e_{X}(x, y) \rightarrow A(y)\right]=A(x)$ for all $x \in X$. Then $A(x) \leq$ $e_{X}(x, y) \rightarrow A(y)$ for all $x, y \in X$. By residuation, $e_{X}(x, y) \odot A(x) \leq A(y)$ for all $x, y \in X$, and so $A \in \tau_{e_{X}}$.

Hence the second equivalent statement is proved.
(3) " $\supseteq$ ": Let $A \in \tau_{e_{X}}$. Then $A(x) \odot e_{X}(x, y) \leq A(y)$ for all $x, y \in X$, and so

$$
\begin{aligned}
A(x) & \leq e_{X}(x, y) \rightarrow A(y) \text { by residuation } \\
& =n\left(e_{X}(x, y) \odot n(A)(y)\right) \quad \text { by Lemma } 2.2(12) .
\end{aligned}
$$

Now, by Lemma 2.2(2), $n\left(e_{X}(x, y) \odot n(A)(y)\right) \rightarrow \perp \leq A(x) \rightarrow \perp$. By the double negative law, $e_{X}(x, y) \odot n(A)(y) \leq n(A)(x)$, and so $n(A)(y) \odot e_{X}^{-1}(y, x) \leq$ $n(A)(x)$. Hence $n(A) \in \tau_{e_{X}^{-1}}$.
$" \subseteq ":$ Let $B \in \tau_{e_{X}^{-1}}$. Since $n(n(B))=B$ by the double negative law, it is enough to show that $n(B) \in \tau_{e_{X}}$. Since $B \in \tau_{e_{X}^{-1}}$, we have $B(x) \odot e_{X}^{-1}(x, y) \leq$ $B(y)$, and so $B(x) \odot e_{X}(y, x) \leq B(y)$. Then

$$
\begin{aligned}
B(x) & \leq e_{X}(y, x) \rightarrow B(y) \quad \text { by residuation } \\
& =n\left(e_{X}(y, x) \odot n(B)(y)\right) \quad \text { by Lemma } 2.2(12) .
\end{aligned}
$$

By Lemma 2.2(2) and the double negative law, we have $e_{X}(y, x) \odot n(B)(y) \leq$ $n(B)(x)$, and so $n(B)(y) \odot e_{X}(y, x) \leq n(B)(x)$. Hence $n(B) \in \tau_{e_{X}}$.
(4) Let $A \in L^{X}$ and $z \in X$. We show $e_{X}(z,-) \in \tau_{e_{X}}$. For all $x, y \in X$, $e_{X}(z, x) \odot e_{X}(x, y) \leq e_{X}(z, y)$ by (E2). Hence $e_{X}(z,-) \in \tau_{e_{X}}$.

We show $\left[\alpha_{X} \rightarrow e_{X}(z,-)\right] \in \tau_{e_{X}}$. For all $x, y \in X$,

$$
\begin{aligned}
{\left[\alpha_{X} \rightarrow e_{X}(z,-)\right](x) \odot e_{X}(x, y) } & =\left[\alpha \rightarrow e_{X}(z, x)\right] \odot e_{X}(x, y) \\
& \leq \alpha \rightarrow\left[e_{X}(z, x) \odot e_{X}(x, y)\right] \text { by Lemma } 2.2(9) \\
& \leq \alpha \rightarrow e_{X}(z, y) \quad \text { by }(\mathrm{E} 2) \\
& =\left[\alpha_{X} \rightarrow e_{X}(z,-)\right](y) .
\end{aligned}
$$

Hence $\left[\alpha_{X} \rightarrow e_{X}(z,-)\right] \in \tau_{e_{X}}$.

We show $\left[e_{X}(-, z) \rightarrow \alpha_{X}\right] \in \tau_{e_{X}}$. For all $x, y \in X$,

$$
\begin{aligned}
{\left[e_{X}(-, z) \rightarrow \alpha_{X}\right] \odot e_{X}(x, y) \odot e_{X}(y, z) } & \leq\left[e_{X}(x, z) \rightarrow \alpha\right] \odot e_{X}(x, z) \quad \text { by }(\mathrm{E} 2) \\
& \leq \alpha .
\end{aligned}
$$

By residuation,

$$
\left[e_{X}(-, z) \rightarrow \alpha_{X}\right](x) \odot e_{X}(x, y) \leq e_{X}(y, z) \rightarrow \alpha=\left[e_{X}(-, z) \rightarrow \alpha_{X}\right](y)
$$

Hence $\left[e_{X}(-, z) \rightarrow \alpha_{X}\right] \in \tau_{e_{X}}$.
We show $\bigvee_{z \in X}\left[e_{X}(z,-) \odot A(z)\right] \in \tau_{e_{X}}$. For all $x, y \in X$,

$$
\begin{aligned}
\bigvee_{z \in X}\left[e_{X}(z,-) \odot A(z)\right](x) \odot e_{X}(x, y) & =\bigvee_{z \in X}\left[e_{X}(z, x) \odot A(z)\right] \odot e_{X}(x, y) \\
& =\bigvee_{z \in X}\left[\left[e_{X}(z, x) \odot e_{X}(x, y)\right] \odot A(z)\right] \\
& \leq \bigvee_{z \in X}\left[e_{X}(z, y) \odot A(z)\right] \text { by }(\mathrm{E} 2) \\
& =\bigvee_{z \in X}\left[e_{X}(z,-) \odot A(z)\right](y) .
\end{aligned}
$$

Hence $\bigvee_{z \in X}\left[e_{X}(z,-) \odot A(z)\right] \in \tau_{e X}$.
We show $\bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right] \in \tau_{e_{X}}$. For all $x, y, w \in X$,

$$
\begin{aligned}
& \bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right](x) \odot e_{X}(x, y) \odot e_{X}(y, w) \\
& \leq \bigwedge_{z \in X}\left[e_{X}(x, z) \rightarrow n(A)(z)\right] \odot e_{X}(x, w) \quad \text { by }(\mathrm{E} 2) \\
& \leq\left[e_{X}(x, w) \rightarrow n(A)(w)\right] \odot e_{X}(x, w) \\
& \leq n(A)(w) .
\end{aligned}
$$

By residuation, $\bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right](x) \odot e_{X}(x, y) \leq e_{X}(y, w) \rightarrow n(A)(w)$ for all $x, y, w \in X$, and so

$$
\begin{aligned}
\bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right](x) \odot e_{X}(x, y) & \leq \bigwedge_{w \in X}\left[e_{X}(y, w) \rightarrow n(A)(w)\right] \\
& =\bigwedge_{w \in X}\left[e_{X}(-, w) \rightarrow n(A)(w)\right](y) .
\end{aligned}
$$

Hence $\bigwedge_{z \in X}\left[e_{X}(-, z) \rightarrow n(A)(z)\right] \in \tau_{e_{X}}$.
Consider a fuzzy bi-partially ordered space $\left(X, e_{X}^{1}, e_{X}^{2}\right)$. To simplify the notation, we shall denote the inverse of $e_{X}^{1}$ and $e_{X}^{2}$ by $e_{X}^{-1}$ and $e_{X}^{-2}$, respectively.

Theorem 3.3. Let $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ be a fuzzy bi-partially ordered space. Then the following hold.
(1) Let $A, B \in L^{X}$. Then $e_{L^{x}}(A, B) \leq e_{L^{x}}(l(B), l(A))$ and $e_{L^{x}}(A, B) \leq$ $e_{L^{x}}(r(B), r(A)$. In particular, if $A \leq B$, then $l(B) \leq l(A)$ and $r(B) \leq r(A)$.
(2) Let $A \in L^{X}$. Then $l(A) \in \tau_{e_{X}^{1}}, r(A) \in \tau_{e_{X}^{2}}, l(A) \leq n(A)$ and $r(A) \leq n(A)$.
(3) If $A \in \tau_{e_{X}^{1}}$, then $A \leq l(r(A))$. Similarly, if $A \in \tau_{e_{X}^{2}}$, then $A \leq r(l(A))$.
(4) $L\left(L^{X}\right)=\left\{l(r(A)) \mid A \in L^{X}\right\}$ and $R\left(L^{X}\right)=\left\{r(l(A)) \mid A \in L^{X}\right\}$.
(5) If $A \in L\left(L^{X}\right)$, then $r(A) \in R\left(L^{X}\right)$. Similarly, if $A \in R\left(L^{X}\right)$, then $l(A) \in L\left(L^{X}\right)$.
(6) If $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left(L^{X}\right), A \in L\left(L^{X}\right)$ and $\alpha \in L$, then $\bigwedge_{i \in \Gamma} A_{i}, \alpha_{X} \rightarrow A \in$ $L\left(L^{X}\right)$. Similarly, if $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq R\left(L^{X}\right), A \in R\left(L^{X}\right)$ and $\alpha \in L$, then $\bigwedge_{i \in \Gamma} A_{i}, \alpha_{X} \rightarrow A \in R\left(L^{X}\right)$.

Proof. (1) Let $A, B \in L^{X}$. Then
$e_{L^{X}}(l(B), l(A))$
$=\bigwedge_{x \in X}\left[\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(B)(y)\right] \rightarrow \bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right]\right]$
$\geq \bigwedge_{x \in X} \bigwedge_{y \in X}\left[\left[e_{X}^{1}(x, y) \rightarrow n(B)(y)\right] \rightarrow\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right]\right]$
$\geq \bigwedge_{x \in X} \bigwedge_{y \in X}[n(B)(y) \rightarrow n(A)(y)]$ by Lemma 2.2(11)
$=\bigwedge_{x \in X} \bigwedge_{y \in X}[A(y) \rightarrow B(y)]$ by Lemma 2.2(12)
$=e_{L^{X}}(A, B)$
and

$$
\begin{aligned}
& e_{L^{X}}(r(B), r(A)) \\
& =\bigwedge_{x \in X}\left[\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(B)(y)\right] \rightarrow \bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right]\right] \\
& \geq \bigwedge_{x \in X} \bigwedge_{y \in X}\left[\left[e_{X}^{2}(x, y) \rightarrow n(B)(y)\right] \rightarrow\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right]\right] \\
& \geq \bigwedge_{x \in X} \bigwedge_{y \in X}[n(B)(y) \rightarrow n(A)(y)] \text { by Lemma 2.2(11) } \\
& =\bigwedge_{x \in X} \bigwedge_{y \in X}[A(y) \rightarrow B(y)] \text { by Lemma 2.2(12) } \\
& =e_{L^{X}}(A, B) .
\end{aligned}
$$

Hence $e_{L^{x}}(A, B) \leq e_{L^{x}}(l(B), l(A))$ and $e_{L^{x}}(A, B) \leq e_{L^{x}}(r(B), r(A))$.
Assume that $A \leq B$. Then $\top=e_{L^{x}}(A, B) \leq e_{L^{x}}(l(B), l(A))$, and so $\top=$ $e_{L^{x}}(l(B), l(A))$. Hence $l(B) \leq l(A)$. Similarly, $\top=e_{L^{x}}(A, B) \leq e_{L^{x}}(r(B), r(A))$, and so $\top=e_{L^{x}}(r(B), r(A))$. Hence $l(B) \leq l(A)$.
(2) By Theorem 3.2(2), we have

$$
\begin{aligned}
l(A) & =\bigwedge_{y \in X}\left[e_{X}^{1}(-, y) \rightarrow n(A)(y)\right] \in \tau_{e_{X}^{1}} \\
r(A) & =\bigwedge_{y \in X}\left[e_{X}^{2}(-, y) \rightarrow n(A)(y)\right] \in \tau_{e_{X}^{2}}
\end{aligned}
$$

Note that

$$
\begin{aligned}
l(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right] \leq e_{X}^{1}(x, x) \rightarrow n(A)(x)=n(A)(x) \\
r(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right] \leq e_{X}^{2}(x, x) \rightarrow n(A)(x)=n(A)(x)
\end{aligned}
$$

Hence $l(A) \leq n(A)$ and $r(A) \leq n(A)$.
(3) Let $A \in \tau_{e_{X}^{1}}$. Then

$$
\begin{aligned}
\operatorname{lr}(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(r(A))(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n\left(\bigwedge_{w \in X}\left[e_{X}^{2}(y, w) \rightarrow n(A)(w)\right]\right)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n\left(\bigwedge_{w \in X} n\left(e_{X}^{2}(y, w) \odot A(w)\right)\right)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow \bigvee_{w \in X}\left[e_{X}^{2}(y, w) \odot A(w)\right]\right] \text { by Lemma 2.2(14) } \\
& \geq \bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow\left[e_{X}^{2}(y, y) \odot A(y)\right]\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow A(y)\right] \\
& =A(x) \quad \text { by Theorem 3.2(2). }
\end{aligned}
$$

Hence $A \leq \operatorname{lr}(A)$.

Let $A \in \tau_{e_{X}^{2}}$. Then

$$
\begin{aligned}
\operatorname{rl}(A)(x) & =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(l(A))(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n\left(\bigwedge_{w \in X}\left[e_{X}^{1}(y, w) \rightarrow n(A)(w)\right]\right)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n\left(\bigwedge_{w \in X} n\left(e_{X}^{1}(y, w) \odot A(w)\right)\right)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow \bigvee_{w \in X}\left[e_{X}^{1}(y, w) \odot A(w)\right]\right] \text { by Lemma 2.2(14) } \\
& \geq \bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow\left[e_{X}^{1}(y, y) \odot A(y)\right]\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow \odot A(y)\right] \\
& =A(x) \quad \text { by Theorem 3.2(2) }
\end{aligned}
$$

Hence $A \leq r l(A)$.
(4) Let $L_{1}\left(L^{X}\right)=\left\{l(r(A)) \mid A \in L^{X}\right\}$.
" $L\left(L^{X}\right) \supseteq L_{1}\left(L^{X}\right)$ ": Let $A \in L^{X}$. Since $r(A) \in \tau_{e_{X}^{2}}$ by (2), we have by (3) that $r(A) \leq r \operatorname{lr}(A)$. Now, by (1), we have $\operatorname{lrlr}(A) \leq \operatorname{lr}(A)$. On the other hand, since $\operatorname{lr}(A) \in \tau_{e_{X}^{1}}$ by (2), we have by (3) that $\operatorname{lr}(A) \leq \operatorname{lr} \operatorname{lr}(A)$. Hence $\operatorname{lr}(A) \in L\left(L^{X}\right)$.
" $L\left(L^{X}\right) \subseteq L_{1}\left(L^{X}\right)$ ": Let $A \in L\left(L^{X}\right)$. Then $A=\operatorname{lr}(A)$, and so $A \in$ $L_{1}\left(L^{X}\right)$.

Let $R_{1}\left(L^{X}\right)=\left\{r l(A) \mid A \in L^{X}\right\}$.
" $R\left(L^{X}\right) \supseteq R_{1}\left(L^{X}\right)$ ": Let $A \in L^{X}$. Since $l(A) \in \tau_{e_{X}^{1}}$ by (2), we have by (3) that $l(A) \leq \operatorname{lrl}(A)$. Now, by $(1), \operatorname{rlrl}(A) \leq \operatorname{rl}(A)$. On the other hand, since $r l(A) \in \tau_{e_{X}^{2}}$ by $(2)$, we have by $(3)$ that $r l(A) \leq \operatorname{rlrl}(A)$. Hence $\operatorname{rlrl}(A)=r l(A)$, and so $r l(A) \in R\left(L^{X}\right)$.
" $R\left(L^{X}\right) \subseteq R_{1}\left(L^{X}\right)$ ": Let $A \in R\left(L^{X}\right)$. Then $A=r l(A)$, and so $A \in$ $R_{1}\left(L^{X}\right)$.
(5) Let $A \in L\left(L^{X}\right)$. Since $\operatorname{lr}(A)=A$, we have $\operatorname{rlr}(A)=r(A)$, and so $r(A) \in$ $R\left(L^{X}\right)$.

Let $A \in R\left(L^{X}\right)$. Since $r l(A)=A$, we have $\operatorname{lr} l(A)=l(A)$, and so $l(A) \in$ $L\left(L^{X}\right)$.
(6) Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left(L^{X}\right)$. Then $A_{i}=\operatorname{lr}\left(A_{i}\right) \in \tau_{e_{X}^{1}}$ by (2). Since $\tau_{e_{X}^{1}}$ is an Alexandrov topology, we have $\bigwedge_{i \in \Gamma} A_{i} \in \tau_{e_{X}^{1}}$. Then $\bigwedge_{i \in \Gamma} A_{i} \leq \operatorname{lr}\left(\bigwedge_{i \in \Gamma} A_{i}\right)$ by (3). On the other hand, for all $i \in \Gamma$,

$$
A_{i}=\operatorname{lr}\left(A_{i}\right) \geq \operatorname{lr}\left(\bigwedge_{i \in \Gamma} A_{i}\right) \quad \text { since } l r \text { is increasing by }(1)
$$

and so $\bigwedge_{i \in \Gamma} A_{i} \geq \operatorname{lr}\left(\bigwedge_{i \in \Gamma} A_{i}\right)$. Hence $\operatorname{lr}\left(\bigwedge_{i \in \Gamma} A_{i}\right)=\bigwedge_{i \in \Gamma} A_{i}$ and $\bigwedge_{i \in \Gamma} A_{i} \in$ $L\left(L^{X}\right)$.

Let $A \in L\left(L^{X}\right)$ and $\alpha \in L$. Then $A=\operatorname{lr}(A) \in \tau_{e_{X}^{1}}$ by (2). Since $\tau_{e_{X}^{1}}$ is an Alexandrov topology, $\alpha_{X} \rightarrow A \in \tau_{e_{X}^{1}}$. Then $\operatorname{lr}\left(\alpha_{X} \rightarrow A\right) \geq \alpha_{X} \rightarrow A$ by (3).

On the other hand, note that

$$
\begin{aligned}
r\left(\alpha_{X} \rightarrow A\right)(x) & =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n\left(\alpha_{X} \rightarrow A\right)(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow[\alpha \odot n(A)(y)]\right] \text { by Lemma 2.2(12) } \\
& \geq \bigwedge_{y \in X}\left[\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right] \odot \alpha\right] \text { by Lemma 2.2(9) } \\
& \geq \bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right] \odot \alpha \\
& =r(A)(x) \odot \alpha .
\end{aligned}
$$

Then $\operatorname{lr}\left(\alpha_{X} \rightarrow A\right) \leq l\left(r(A) \odot \alpha_{X}\right)$. Furthermore,

$$
\begin{aligned}
l\left(r(A) \odot \alpha_{X}\right)(x) & =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n\left(r(A) \odot \alpha_{X}\right)(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow[\alpha \rightarrow n(r(A))(y)]\right] \text { by Lemma 2.2(12) } \\
& =\bigwedge_{y \in X}\left[\alpha \rightarrow\left[e_{X}^{1}(x, y) \rightarrow n(r(A))(y)\right]\right] \text { by Lemma 2.2(7) } \\
& =\alpha \rightarrow \bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(r(A))(y)\right] \text { by Lemma 2.2(4) } \\
& =\alpha \rightarrow \operatorname{lr}(A)(x) \\
& =\alpha \rightarrow A(x) \quad \text { since } A \in L\left(L^{X}\right) \\
& =\left(\alpha_{X} \rightarrow A\right)(x) .
\end{aligned}
$$

Hence $\operatorname{lr}\left(\alpha_{X} \rightarrow A\right) \leq l\left(r(A) \odot \alpha_{X}\right)=\alpha_{X} \rightarrow A$.
Therefore $\operatorname{lr}\left(\alpha_{X} \rightarrow A\right)=\alpha_{X} \rightarrow A$ and $\alpha_{X} \rightarrow A \in L\left(L^{X}\right)$.
Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq R\left(L^{X}\right)$. Then $A_{i}=r l\left(A_{i}\right) \in \tau_{e_{X}^{2}}$ by (2). Since $\tau_{e_{X}^{2}}$ is an Alexandrov topology, $\bigwedge_{i \in \Gamma} A_{i} \in \tau_{e_{X}^{2}}$. Then $r l\left(\bigwedge_{i \in \Gamma} A_{i}\right) \in \tau_{e_{X}^{2}}$ by (3).

On the other hand, for all $i \in \Gamma$,

$$
A_{i}=r l\left(A_{i}\right) \geq r l\left(\bigwedge_{i \in \Gamma} A_{i}\right) \quad \text { since } r l \text { is increasing by }(1)
$$

and so $\bigwedge_{i \in \Gamma} A_{i} \geq r l\left(\bigwedge_{i \in \Gamma} A_{i}\right)$. Hence $r l\left(\bigwedge_{i \in \Gamma} A_{i}\right)=\bigwedge_{i \in \Gamma} A_{i}$ and $\bigwedge_{i \in \Gamma} A_{i} \in$ $R\left(L^{X}\right)$.

Let $A \in R\left(L^{X}\right)$ and $\alpha \in L$. Then $A=r l(A) \in \tau_{e_{X}^{2}}$ by (2). Since $\tau_{e_{X}^{2}}$ is an Alexandrov topology, $\alpha_{X} \rightarrow A \in \tau_{e_{X}^{2}}$. Then $r l\left(\alpha_{X} \rightarrow A\right) \geq \alpha_{X} \rightarrow A$.

On the other hand, note that

$$
\begin{aligned}
l\left(\alpha_{X} \rightarrow A\right)(x) & =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n\left(\alpha_{X} \rightarrow A\right)(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow[\alpha \odot n(A)(y)]\right] \text { by Lemma 2.2(12) } \\
& \geq \bigwedge_{y \in X}\left[\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right] \odot \alpha\right] \\
& \geq \bigwedge_{y \in X}\left[e_{X}^{1}(x, y) \rightarrow n(A)(y)\right] \odot \alpha \\
& =l(A)(x) \odot \alpha .
\end{aligned}
$$

Then $r l\left(\alpha_{X} \rightarrow A\right) \leq r\left(l(A) \odot \alpha_{X}\right)$. Furthermore,

$$
\begin{aligned}
r\left(l(A) \odot \alpha_{X}\right)(x) & =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n\left(l(A) \odot \alpha_{X}\right)(y)\right] \\
& =\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow[\alpha \rightarrow n(l(A))(y)]\right] \text { by Lemma 2.2(12) } \\
& =\bigwedge_{y \in X}\left[\alpha \rightarrow\left[e_{X}^{2}(x, y) \rightarrow n(l(A))(y)\right]\right] \text { by Lemma 2.2(7) } \\
& =\alpha \rightarrow \bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(l(A))(y)\right] \text { by Lemma 2.2(4) } \\
& =\alpha \rightarrow \operatorname{rl}(A)(x)=\alpha \rightarrow A(x) \quad \text { since } A \in R\left(L^{X}\right) \\
& =\left(\alpha_{X} \rightarrow A\right)(x) .
\end{aligned}
$$

Hence $r l\left(\alpha_{X} \rightarrow A\right) \leq r\left(l(A) \odot \alpha_{X}\right) \leq \alpha_{X} \rightarrow A$.

Therefore $r l\left(\alpha_{X} \rightarrow A\right)=\alpha_{X} \rightarrow A$ and $\alpha_{X} \rightarrow A \in R\left(L^{X}\right)$.
Definition 3.4. Let $\left(L_{1}, \leq, \wedge, \vee\right)$ and $\left(L_{2}, \leq, \wedge, \vee\right)$ be complete lattices. $L_{1}$ and $L_{2}$ are anti-isomorphic if there exists a bijective map $h: L_{1} \rightarrow L_{2}$ such that

$$
h\left(\bigvee_{i \in I} x_{i}\right)=\bigwedge_{i \in I} h\left(x_{i}\right) \text { and } h\left(\bigwedge_{i \in I} x_{i}\right)=\bigvee_{i \in I} h\left(x_{i}\right) \text { for all } \quad\left\{x_{i}\right\}_{i \in \Gamma} \subseteq L_{1}
$$

Theorem 3.5. Let $\left(X, e_{X}^{1}, e_{X}^{2}\right)$ be a fuzzy bi-partially ordered space. Let l and $r$ be the maps defined in Definition 3.1. The the following hold.
(1) $\left(L\left(L^{X}\right), \wedge, \sqcup^{l}, \perp_{X}, \top_{X}\right)$ is a complete lattice where

$$
\left(\bigwedge_{i \in \Gamma} A_{i}\right)(x)=\bigwedge_{i \in \Gamma} A_{i}(x) \text { and }\left(\cup_{i \in \Gamma}^{l} A_{i}\right)(x)=l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x)
$$

for all $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left(L^{X}\right)$.
(2) $\left(R\left(L^{X}\right), \Lambda, \sqcup^{r}, \perp_{X}, \top_{X}\right)$ is a complete lattice where

$$
\left(\bigwedge_{i \in \Gamma} A_{i}\right)(x)=\bigwedge_{i \in \Gamma} A_{i}(x) \text { and }\left(\sqcup_{i \in \Gamma}^{r} A_{i}\right)(x)=r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)(x)
$$

for all $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq R\left(L^{X}\right)$.
(3) $L\left(L^{X}\right)$ and $R\left(L^{X}\right)$ are anti-isomorphic.

Proof. (1) Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left(L^{X}\right)$. We first show $\sqcup_{i \in \Gamma} A_{i} \in L\left(L^{X}\right)$. Since $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \in \tau_{e_{X}^{1}}$ by Theorem 3.2(2), we have by Theorem 3.2(3) that $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \leq \operatorname{lrl}\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$. On the other hand, since $r\left(A_{i}\right) \in \tau_{e_{X}^{2}}$ by Theorem 3.3(2) and $\tau_{e_{X}^{2}}$ is an Alexandrov topology, we have $\bigwedge_{i \in \Gamma} r\left(A_{i}\right) \in \tau_{e_{X}^{2}}$. Now, by Theorem 3.3(3), $r l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \geq \bigwedge_{i \in \Gamma} r\left(A_{i}\right)$. Since $l$ is decreasing by Theorem 3.3(1), we have $\operatorname{lrl}\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \leq l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$. Hence $\operatorname{lrl}\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)=$ $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$ and $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \in L\left(L^{X}\right)$.

We show that $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$ is an upper bound of $\left\{A_{i}\right\}_{i \in \Gamma}$. Since $\bigwedge_{i \in \Gamma} r\left(A_{i}\right) \leq$ $r\left(A_{i}\right)$ for all $i \in \Gamma$ and $l$ is decreasing by Theorem 3.3(1), we have $\operatorname{lr}\left(A_{i}\right) \leq$ $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$. Since $A_{i} \in L\left(L^{X}\right)$, we have $\operatorname{lr}\left(A_{i}\right)=A_{i}$. Hence we have $A_{i} \leq l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$.

We now show that $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$ is the supremum of $\left\{A_{i}\right\}_{i \in \Gamma}$. Assume that $A_{i} \leq B$ for all $i \in \Gamma$ where $B \in L\left(L^{X}\right)$. Then $r(B) \leq r\left(A_{i}\right)$ for all $i \in$ $\Gamma$, and so $r(B) \leq \bigwedge_{i \in \Gamma} r\left(A_{i}\right)$. Since $l$ is decreasing by Theorem 3.3(1), we have $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \leq \operatorname{lr}(B)$. Since $B \in L\left(L^{X}\right)$, we have $\operatorname{lr}(B)=B$. Hence $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right) \leq B$.

Therefore $\sqcup_{i \in \Gamma}^{l} A_{i}$ is the supremum of $\left\{A_{i}\right\}_{i \in \Gamma}$ in $L\left(L^{X}\right)$.
(2) Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq R\left(L^{X}\right)$. We first show that $\sqcup_{i \in \Gamma}^{r} A_{i} \in R\left(L^{X}\right)$. Since $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \in \tau_{e_{X}^{2}}$ by Theorem 3.3(2), we have by Theorem 3.3(3) that $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \leq \operatorname{rlr}\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$. On the other hand, since $l\left(A_{i}\right) \in \tau_{e_{X}^{1}}$ by Theorem 3.3(1) and $\tau_{e_{X}^{1}}$ is an Alexandrov topology, we have $\bigwedge_{i \in \Gamma} l\left(A_{i}\right) \in \tau_{e_{X}^{1}}$. Now, by Theorem 3.3(3), we have $\bigwedge_{i \in \Gamma} l\left(A_{i}\right) \leq \operatorname{lr}\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$. Since $r$ is decreasing by Theorem 3.3(1), we have $\operatorname{rlr}\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \leq r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$. Hence $r l r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)=r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$ and $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \in R\left(L^{X}\right)$.

We show that $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$ is an upper bound of $\left\{A_{i}\right\}_{i \in \Gamma}$. Since $\bigwedge_{i \in \Gamma} l\left(A_{i}\right) \leq$ $l\left(A_{i}\right)$ for all $i \in \Gamma$ and $r$ is decreasing by Theorem 3.3(1), we have $r l\left(A_{i}\right) \leq$ $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$ for all $i \in \Gamma$. Since $A_{i} \in R\left(L^{X}\right)$, we have $r l\left(A_{i}\right)=A_{i}$. Hence $A_{i} \leq r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$ for all $i \in \Gamma$.

We now show that $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)$ is the supremum of $\left\{A_{i}\right\}_{i \in \Gamma}$. Assume that $A_{i} \leq B$ for all $i \in \Gamma$ where $B \in R\left(L^{X}\right)$. Then $l(B) \leq l\left(A_{i}\right)$ for all $i \in \Gamma$, and so $l(B) \leq \bigwedge_{i \in \Gamma} l\left(A_{i}\right)$. Since $r$ is decreasing by Theorem 3.3(1), we have $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \leq r l(B)=B$. Hence $r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right) \leq B$.

Therefore $\sqcup_{i \in \Gamma}^{r} A_{i}$ is the supremum of $\left\{A_{i}\right\}_{i \in \Gamma}$ in $R\left(L^{X}\right)$. (3) Define $r_{1}: L\left(L^{X}\right) \rightarrow R\left(L^{X}\right)$ by

$$
r_{1}(A)(x)=\bigwedge_{y \in X}\left[e_{X}^{2}(x, y) \rightarrow n(A)(y)\right]
$$

We first show that $r_{1}$ is well-defined. Let $A \in L\left(L^{X}\right)$. Then $\operatorname{lr}(A)=A$. Since $\operatorname{rlr}_{1}(A)=\operatorname{rlr}(A)=r(A)=r_{1}(A)$, we have $r_{1}(A) \in R\left(L^{X}\right)$. Hence $r_{1}$ is welldefined.

We show that $r_{1}$ is injective. Assume that $r_{1}(A)=r_{1}(B)$ where $A, B \in$ $L\left(L^{X}\right)$. Then $A=\operatorname{lr}(A)=l r_{1}(A)=\operatorname{lr}(B)=\operatorname{lr}(B)=B$. Hence $r_{1}$ is injective.

We show that $r_{1}$ is surjective. Let $C \in R\left(L^{X}\right)$. Then $r l(C)=C$ and $l(C) \in L\left(L^{X}\right)$ by Theorem 3.3(5). Moreover, $C=r l(C)=r_{1}(l(C))$. Hence $r_{1}$ is surjective.

Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left(L^{X}\right)$. Since $r\left(A_{i}\right) \in R\left(L^{X}\right)$ by Theorem 3.3(5), we have by Theorem 3.3(6) that $\bigwedge_{i \in \Gamma} r\left(A_{i}\right) \in R\left(L^{X}\right)$. Now, note that

$$
r_{1}\left(\sqcup_{i \in \Gamma}^{l} A_{i}\right)=r l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)=\bigwedge_{i \in \Gamma} r_{1}\left(A_{i}\right)
$$

and

$$
r_{1}\left(\bigwedge_{i \in \Gamma} A_{i}\right)=r\left(\bigwedge_{i \in \Gamma} l r\left(A_{i}\right)\right)=r\left(\bigwedge_{i \in \Gamma} l\left(r_{1}\left(A_{i}\right)\right)\right)=\sqcup_{i \in \Gamma}^{r} r_{1}\left(A_{i}\right)
$$

Therefore $L\left(L^{X}\right)$ and $R\left(L^{X}\right)$ are anti-isomorphic.

Example 3.6. Let $(X, \leq, \wedge, \vee \perp, \top)$ be a bounded lattice. Let $([0,1], \odot, \rightarrow, n, 0,1)$ be the complete residuated lattice with the double negative law where

$$
x \odot y=\max \{0, x+y-1\}, x \rightarrow y=\min \{1-x+y, 1\} \text { and } n(x)=1-x
$$

Define two maps $e^{1}, e^{2}: X \times X \rightarrow[0,1]$ by

$$
e^{1}(x, y)=\left\{\begin{array}{ll}
1, & \text { if } x=y, \\
0, & \text { if } x \neq y
\end{array} \text { and } e^{2}(x, y)= \begin{cases}1, & \text { if } x \leq y \\
0, & \text { if } x \not \leq y\end{cases}\right.
$$

Let $e^{-i}: X \times X \rightarrow[0,1]$ be the map defined by $e^{-i}(x, y)=e^{i}(x, y)$ where $i=1,2$. Then one can see that $e^{i}$ and $e^{-i}$ are fuzzy partial orders where $i=1,2$. By

Theorem 3.2, one can see that

$$
\begin{aligned}
\tau_{e^{1}} & =\left\{A \in[0,1]^{X} \mid A=\bigvee_{x \in X}\left[A(x) \odot e^{1}(x,-)\right]\right\}=[0,1]^{X}=\tau_{e^{-1}} \\
\tau_{e^{2}} & =\left\{A \in L^{X} \mid A=\bigvee_{x \in X}\left[A(x) \odot e^{2}(x,-)\right]\right\} \\
& =\left\{A \in L^{X} \mid A=\bigvee_{x \leq-} A(x)\right\} \\
& =\left\{A \in L^{X} \mid \text { if } x \leq y, \text { then } A(x) \leq A(y)\right\} \\
\tau_{e^{-2}} & =\left\{A \in L^{X} \mid \text { if } x \leq y, \text { then } A(y) \leq A(x)\right\}
\end{aligned}
$$

(1) Consider the fuzzy partially ordered space $\left(X, e^{1}, e^{-1}\right)$. Let $l$ and $r$ be the maps defined in Definition 3.1. Then

$$
\begin{aligned}
l(A)(x) & =\bigwedge_{y \in X}\left[e^{1}(x, y) \rightarrow n(A)(y)\right]=e^{1}(x, x) \rightarrow n(A)(x)=n(A)(x) \\
r(A)(x) & =\bigwedge_{y \in X}\left[e^{-1}(x, y) \rightarrow n(A)(y)\right]=e^{-1}(x, x) \rightarrow n(A)(x)=n(A)(x)
\end{aligned}
$$

Let $A \in \tau_{e^{1}}=[0,1]^{X}$ and $B \in \tau_{e^{-1}}=[0,1]^{X}$. Then $A=\operatorname{lr}(A)$ and $B=r l(B)$.
Let $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq \tau_{e^{1}}=[0,1]^{X}$ and $\left\{B_{i}\right\}_{i \in \Gamma} \subseteq \tau_{e^{-1}}=[0,1]^{X}$. Define $\sqcup_{i \in \Gamma}^{l} A_{i}=$ $l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)$ and $\sqcup_{i \in \Gamma}^{r} B_{i}=r\left(\bigwedge_{i \in \Gamma} l\left(B_{i}\right)\right)$. Then

$$
\begin{aligned}
& \sqcup_{i \in \Gamma}^{l} A_{i}=l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)=n\left(\bigwedge_{i \in \Gamma} n\left(A_{i}\right)\right)=\bigvee_{i \in \Gamma} A_{i}, \\
& \sqcup_{i \in \Gamma}^{r} B_{i}=r\left(\bigwedge_{i \in \Gamma} l\left(B_{i}\right)\right)=n\left(\bigwedge_{i \in \Gamma} n\left(B_{i}\right)\right)=\bigvee_{i \in \Gamma} B_{i} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& L\left([0,1]^{X}\right)=\left\{A \in[0,1]^{X} \mid \operatorname{lr}(A)=A\right\}=[0,1]^{X}, \\
& R\left([0,1]^{X}\right)=\left\{B \in[0,1]^{X} \mid \operatorname{rl}(A)=A\right\}=[0,1]^{X} .
\end{aligned}
$$

By Theorem 3.5, $\left([0,1]^{X}, \bigwedge, \sqcup^{l}=\bigvee, 0_{X}, 1_{X}\right)$ and $\left([0,1]^{X}, \bigwedge, \sqcup^{r}=\bigvee, 0_{X}, 1_{X}\right)$ are complete lattices which are anti-isomorphic.
(2) Consider the fuzzy partially ordered space $\left(X, e^{1}, e^{2}\right)$. Let $l$ and $r$ be the maps defined in Definition 3.1. Then

$$
\begin{aligned}
l(A)(x) & =\bigwedge_{y \in X}\left[e^{1}(x, y) \rightarrow n(A)(y)\right]=n(A)(x) \\
r(A)(x) & =\bigwedge_{y \in X}\left[e^{2}(x, y) \rightarrow n(A)(y)\right]=\bigwedge_{\substack{x \leq y \\
y \in X}} n(A)(y)
\end{aligned}
$$

Let $A \in[0,1]^{X}=\tau_{e^{1}}$. Then

$$
\begin{aligned}
\operatorname{lr}(A)(x) & =n r(A)(x) \quad \text { by }(1) \\
& =n\left(\bigwedge_{\substack{x \leq y \\
y \in X}} n(A)(y)\right) \\
& =\bigvee_{\substack{x \leq y \\
y \in X}} A(y) \quad \text { by Lemma } 2.2(14)
\end{aligned}
$$

Now, by Theorem 3.3(4), we have

$$
\begin{aligned}
L\left([0,1]^{X}\right) & =\left\{A \in[0,1]^{X} \mid A=\bigvee_{-\leq y}^{y \in X} A(y)\right\} \\
& =\left\{A \in[0,1]^{X} \mid \text { if } x \leq y, \text { then } A(y) \leq A(x)\right\}
\end{aligned}
$$

Let $B \in[0,1]^{X}$. Then

$$
\begin{aligned}
r l(B)(x) & =r(n(B))(x) \quad \text { by }(1) \\
& =\bigwedge_{\substack{x \leq y \\
y \in X}} B(y) .
\end{aligned}
$$

Now, by Theorem 3.3(4), we have

$$
\begin{aligned}
R\left([0,1]^{X}\right) & =\left\{B \in[0,1]^{X} \mid B=\bigwedge_{\substack{y \in y}} B(y)\right\} \\
& =\left\{B \in[0,1]^{X} \mid \text { if } x \leq y, \text { then } B(x) \leq B(y)\right\} \\
& =\tau_{e^{2}} \quad \text { by }(1) .
\end{aligned}
$$

For all $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left([0,1]^{X}\right)$, define $\sqcup_{i \in \Gamma}^{l} A_{i}(x)=l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x)$ (see Theorem 3.5). Then

$$
\begin{aligned}
\sqcup_{i \in \Gamma}^{l} A_{i}(x) & =l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x)=n\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x) \quad \text { by }(1) \\
& =n\left(\bigwedge_{i \in \Gamma} \bigwedge_{\substack{x \leq y \\
y \in X}} n\left(A_{i}\right)(y)\right) \\
& =\bigvee_{i \in \Gamma} \bigvee_{\substack{x \leq y \\
y \in X}} A_{i}(y) \quad \text { by Lemma 2.2(14) } \\
& =\bigvee_{i \in \Gamma} A_{i}(x) \quad \text { since } A_{i} \text { is decreasing. }
\end{aligned}
$$

Now, by Theorem 3.5(1), $\left(L\left([0,1]^{X}\right), \bigwedge, \sqcup^{l}=\bigvee, 0_{X}, 1_{X}\right)$ is a complete lattice.
For all $\left\{B_{i}\right\}_{i \in \Gamma} \subseteq R\left([0,1]^{X}\right)$, define $\sqcup_{i \in \Gamma}^{r} B_{i}(x)=r\left(l\left(B_{i}\right)\right)(x)$ (see Theorem 3.5). Then

$$
\begin{aligned}
\sqcup_{i \in \Gamma}^{r} B_{i}(x) & =r\left(\bigwedge_{i \in \Gamma} l\left(B_{i}\right)\right)(x)=r\left(\bigwedge_{i \in \Gamma} n\left(B_{i}\right)\right)(x) \quad \text { by }(1) \\
& =r\left(n\left(\bigvee_{i \in \Gamma} B_{i}\right)\right)(x) \quad \text { by Lemma } 2.2(14) \\
& =\bigwedge_{x \leq y}^{\left.x \leq \bigvee_{i \in \Gamma} B_{i}\right)(y)} \\
& =\bigvee_{i \in \Gamma} B_{i}(x) \quad \text { since } B_{i} \text { is increasing. }
\end{aligned}
$$

Now, by Theorem 3.5(2), $\left(R\left([0,1]^{X}\right), \bigwedge, \sqcup^{r}=\bigvee, 0_{X}, 1_{X}\right)$ is a complete lattice.
Define $r_{1}: L\left([0,1]^{X}\right) \rightarrow R\left([0,1]^{X}\right)$ by $r_{1}(A)(x)=\bigwedge_{y \in X}\left[e^{2}(x, y) \rightarrow n(A)(y)\right]$.
Then

$$
r_{1}(A)(x)=\bigwedge_{\substack{x \leq y \\ y \in X}} n(A)(y)=n(A)(x) \quad \text { since } n(A) \text { is increasing. }
$$

By Theorem 3.5, $r_{1}\left(\sqcup_{i \in \Gamma}^{l} A_{i}\right)=\bigwedge_{i \in \Gamma} r_{1}\left(A_{i}\right)$ and $r_{1}\left(\bigwedge_{i \in \Gamma} A_{i}\right)=\sqcup_{i \in \Gamma}^{r} r_{1}\left(A_{i}\right)$ for all $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left([0,1]^{X}\right)$. Furthermore, $L\left([0,1]^{X}\right)$ and $R\left([0,1]^{X}\right)$ are antiisomorphic.
(3) Consider the fuzzy partially ordered space $\left(X, e^{2}, e^{-2}\right)$. Let $l$ and $r$ be the maps defined in Definition 3.1. Then

$$
\begin{aligned}
l(A)(x) & =\bigwedge_{y \in X}\left[e^{2}(x, y) \rightarrow n(A)(y)\right]=\bigwedge_{\substack{x \leq y \\
y \in X}} n(A)(y) \\
r(A)(x) & =\bigwedge_{y \in X}\left[e^{-2}(x, y) \rightarrow n(A)(y)\right]=\bigwedge_{\substack{y \leq x \\
y \in X}} n(A)(y)
\end{aligned}
$$

Let $A \in[0,1]^{X}$. Then

$$
\begin{aligned}
\operatorname{lr}(A)(x) & =\bigwedge_{\substack{x \leq y \\
y \in X}} n(r(A))(y)=n\left(\bigvee_{\substack{x \leq y \\
y \in X}} r(A)(y)\right) \\
& =n\left(\bigvee_{\substack{x \leq y \\
y \in X}}^{\left.\bigvee_{\substack{z \leq y \\
z \in X}} n(A)(z)\right)=\bigwedge_{\substack{x \leq y \\
y \in X}} \bigwedge_{\substack{z \leq y \\
z \in X}} A(z) .} .\right.
\end{aligned}
$$

Hence

$$
L\left([0,1]^{X}\right)=\left\{A \in[0,1]^{X} \mid \text { if } x \leq y, \text { then } A(x) \leq A(y)\right\}=\tau_{e^{2}}
$$

Let $B \in[0,1]^{X}$. Then

$$
\begin{aligned}
r l(B)(x) & =\bigwedge_{\substack{y \leq x \\
y \in X}} n l(B)(y)=n\left(\bigvee_{\substack{y \leq x \\
y \in X}} l(B)(y)\right) \\
& =n\left(\bigvee_{\substack{y \leq x \\
y \in X}} \bigwedge_{\substack{y \leq z \\
z \in X}} n(B)(z)\right)=\bigwedge_{\substack{y \leq x \\
y \in X}} \bigvee_{\substack{y \leq z \\
z \in X}} B(z) .
\end{aligned}
$$

Hence

$$
R\left([0,1]^{X}\right)=\left\{B \in[0,1]^{X} \mid \text { if } x \leq y, \text { then } B(y) \leq B(x)\right\}=\tau_{e^{-2}}
$$

For all $\left\{A_{i}\right\}_{i \in \Gamma} \subseteq L\left([0,1]^{X}\right)$, define $\sqcup_{i \in \Gamma}^{l} A_{i}(x)=l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x)$ (see Theorem 3.5). Then

$$
\sqcup_{i \in \Gamma}^{l} A_{i}(x)=l\left(\bigwedge_{i \in \Gamma} r\left(A_{i}\right)\right)(x)=n\left(\bigwedge_{i \in \Gamma} n\left(A_{i}\right)\right)(x)=\bigvee_{i \in \Gamma} A_{i}(x)
$$

By Theorem 3.5, $\left(L\left([0,1]^{X}\right), \bigwedge, \sqcup^{l}=\bigvee, 0_{X}, 1_{X}\right)$ is a complete lattice.
For all $\left\{B_{i}\right\}_{i \in \Gamma} \subseteq R\left([0,1]^{X}\right)$, define $\sqcup_{i \in \Gamma}^{r} B_{i}(x)=r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)(x)$ (see Theorem 3.5). Then

$$
\sqcup_{i \in \Gamma}^{r} B_{i}(x)=r\left(\bigwedge_{i \in \Gamma} l\left(A_{i}\right)\right)(x)=n\left(\bigwedge_{i \in \Gamma} n\left(A_{i}\right)\right)(x)=\bigvee_{i \in \Gamma} B_{i}(x)
$$

By Theorem 3.5, $\left(R\left([0,1]^{X}\right), \bigwedge, \sqcup^{r}=\bigvee, 0_{X}, 1_{X}\right)$ is a complete lattice. Moreover, $\left(L\left([0,1]^{X}\right), \bigwedge, \sqcup^{l}=\bigvee, 0_{X}, 1_{X}\right)$ and $\left(R\left([0,1]^{X}\right), \bigwedge, \sqcup^{r}=\bigvee, 0_{X}, 1_{X}\right)$ are anti-isomorphic by Theorem 3.5.
Example 3.7. Let $X=\left\{h_{1}, h_{2}, h_{3}\right\}$ be the set. Let $Y=\{e, b, w, c, i\}$ be the set with $h_{i}=$ "house", $e=$ "expensive", $b=$ "beautiful", $w=$ "wooden", $c=$ "creative" and $i=$ "in the green surroundings". Let $([0,1], \odot, \rightarrow, n, 0,1)$ be the complete residuated lattice defined in Example 3.6. Let $R: X \times Y \rightarrow[0,1]$ be the fuzzy information defined as follows:

| $R$ | $e$ | $b$ | $w$ | $c$ | $i$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $h_{1}$ | 0.1 | 0.5 | 0.6 | 0.3 | 0.7 |
| $h_{2}$ | 0.8 | 0.1 | 0.9 | 0.8 | 0.5 |
| $h_{3}$ | 0.4 | 0.9 | 0.4 | 0.5 | 0.3 |

Define $e_{1}, e_{2}: X \times X \rightarrow[0,1]$ by

$$
\begin{aligned}
& e_{1}\left(h_{i}, h_{j}\right)=\bigwedge_{x \in\{e, b, w\}}\left[R\left(h_{i}, x\right) \rightarrow R\left(h_{j}, x\right)\right] \\
& e_{2}\left(h_{i}, h_{j}\right)=\bigwedge_{x \in\{c, i\}}\left[R\left(h_{i}, x\right) \rightarrow R\left(h_{j}, x\right)\right]
\end{aligned}
$$

Then

| $e_{1}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ |
| :---: | :---: | :---: | :---: |
| $h_{1}$ | 1 | 0.6 | 0.8 |
| $h_{2}$ | 0.3 | 1 | 0.5 |
| $h_{3}$ | 0.6 | 0.2 | 1 |

and

| $e_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ |
| :---: | :---: | :---: | :---: |
| $h_{1}$ | 1 | 0.8 | 0.6 |
| $h_{2}$ | 0.5 | 1 | 0.7 |
| $h_{3}$ | 0.8 | 1 | 1 |

One can see that $\left(X, e_{1}, e_{2}\right)$ is a fuzzy bi-partially ordered space. (1) Let $A=\left(A\left(h_{1}\right), A\left(h_{2}\right), A\left(h_{3}\right)\right)=(0.7,0.4,0.1) \in[0,1]^{X}$. Since

$$
\begin{aligned}
& 0.5=A\left(h_{1}\right) \odot e_{1}\left(h_{1}, h_{3}\right) \not \leq A\left(h_{3}\right)=0.1, \\
& 0.5=A\left(h_{1}\right) \odot e_{2}\left(h_{1}, h_{2}\right) \not \leq A\left(h_{2}\right)=0.4,
\end{aligned}
$$

we have $A \notin \tau_{e_{1}}$ and $A \notin \tau_{e_{2}}$. A tedious computation gives us that $l(A)=$ $(0.3,0.6,0.7), r(A)=(0.3,0.6,0.5), \operatorname{lr}(A)=(0.7,0.4,0.5), r l(A)=(0.6,0.4,0.3)$, $\operatorname{lrl}(A)=(0.4,0.6,0.7), \operatorname{rlrl}(A)=(0.6,0.4,0.3)$ and $\operatorname{lrlrl}(A)=(0.4,0.6,0.7)$. Then one can see that $r \operatorname{lr}(A)=r(A), l(A) \neq \operatorname{lr} l(A), A \notin L(L(X))$ and $A \notin$ $R(L(X))$. Moreover, $r(A), r l(A) \in R(L(X))$ and $\operatorname{lr}(A), \operatorname{lrl}(A) \in L(L(X))$. Hence

$$
\begin{aligned}
r(A) \sqcup^{r} r l(A) & =r[l(r(A)) \wedge l(r l(A))]=r[(0.7,0.4,0.5) \wedge(0.4,0.6,0.7)] \\
& =r(0.4,0.4,0.5)=(0.6,0.6,0.5), \\
\operatorname{lr}(A) \sqcup^{l} \operatorname{lrl}(A) & =l[r(\operatorname{lr}(A)) \wedge r(\operatorname{lrl}(A))]=l[(0.3,0.6,0.5)] \wedge(0.6,0.4,0.3)] \\
& =l(0.3,0.4,0.3)=(0.7,0.6,0.7) .
\end{aligned}
$$

(2) Let $A=(0.7,0.4,0.1) \in[0,1]^{X}\left(\right.$ see (1)). Let $B=(0.3,0.8,0.5) \in[0,1]^{X}$. Then one can see that $B \in \tau_{e_{1}}$ and $B \in \tau_{e_{2}}$.

A tedious computation gives us that $l(B)=(0.6,0.2,0.5), r(B)=(0.4,0.2,0.2)$, $\operatorname{lr}(B)=(0.6,0.8,0.8), \operatorname{rl}(B)=(0.4,0.8,0.5), \operatorname{lrl}(B)=(0.6,0.2,0.5)$ and $\operatorname{rlr}(B)=$ $(0.4,0.2,0.2)$. Then $\operatorname{lrl}(B)=l(B), \operatorname{rlr}(B)=r(B), l(B) \in L(L(X))$ and $r(B) \in R(L(X))$. Hence

$$
\begin{aligned}
r(A) \sqcup^{r} r(B) & =r[l(r(A)) \wedge l(r(B))]=r[(0.7,0.4,0.5) \wedge(0.6,0.8,0.8)] \\
& =r(0.6,0.4,0.5)=(0.4,0.6,0.5), \\
\operatorname{lr}(A) \sqcup^{l} l(B) & =l[r(l r(A)) \wedge r(l(B))]=l[(0.3,0.6,0.5) \wedge(0.4,0.8,0.5)] \\
& =l(0.3,0.6,0.5)=(0.7,0.4,0.5), \\
l r(A) \sqcup^{l} l r(B) & =l[r(l r(A)) \wedge r(l r(B))]=l[(0.3,0.6,0.5) \wedge(0.4,0.2,0.2)] \\
& =l(0.3,0.2,0.2)=(0.7,0.8,0.8) .
\end{aligned}
$$

By Theorem 3.5, $\left(L\left([0,1]^{X}\right), \bigwedge, \sqcap^{l}, 0_{X}, 1_{X}\right)$ and $\left(R\left([0,1]^{X}\right), \bigwedge, \sqcap^{r}, 0_{X}, 1_{X}\right)$ are complete lattices, which are anti-isomorphic.

## 4. Conclusion

The present study focused on introducing an algebraic structure that is induced by a fuzzy bi-partial order on a complete residuated lattice with the double negative law. Specifically, we demonstrated that the two families of $l$-stable and $r$-stable fuzzy sets can be regarded as complete lattices, and we established that these two families are anti-isomorphic. Furthermore, we provided examples of such orders within the context of an information system. We hope that this study represents a valuable contribution to the field of mathematics and has the potential to inform future research in this area.

In forthcoming times, there is a potential for further exploration of a variety of theoretical properties of fuzzy bi-partially ordered spaces on complete residuated lattices with the double negative law.

Conflicts of interest : The author declares no conflict of interest.
Data availability : Not applicable

## References

1. R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
2. R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic 128 (2004), 277-298.
3. G. Ciobanu and C. Vǎideanu, Similarity relations in fuzzy attribute-oriented concept lattices, Fuzzy Sets and Systems 275 (2015), 88-109.
4. G. Ciobanu and C. Vǎideanu, A note on similarity relations between fuzzy attribute-oriented concept lattices, Information Science 460 (2018), 254-263.
5. I. Düntsch and E. Mares, Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs, Springer Verlag, 2021.
6. I. Düntsch, E. Orłowska and A.M. Radzikowska, Lattice-based relation algebras and their rpresentabilty, Lecture Notes in Computer Science 2929, Springer-Verlag, 2003, 234-258.
7. I. Düntsch, E. Orłowska and A.M. Radzikowska, Lattice-based relation algebras II, Lecture Notes in Artificial Intelligence 4342, Springer-Verlag, 2006, 267-289.
8. P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
9. U. Höhle and E.P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publishers, Boston, 1995.
10. U. Höhle and S.E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, 1999.
11. J. Konecny and M. Krupka, Block relations in formal fuzzy concept analysis, Int. J. Approx. Reasoning 73 (2016), 27-55.
12. Z.M. Ma and B.Q. Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Information Sciences 218 (2013), 194-204.
13. J. Medina, Multi-adjoint property-oriented and object-oriented concept lattices, Information Sciences 190 (2012), 95-106.
14. J.M. Oh and Y.C. Kim, Various fuzzy connections and fuzzy concepts in complete coresiduated lattices, Int. J. Approx. Reasoning 142 (2022), 451-468.
15. J.M. Oh and Y.C. Kim, Fuzzy Galois connections on Alexandrov L-topologies, Journal of Intelligent and Fuzzy Systems 40 (2021), 251-270.
16. E. Orłowska and A.M. Radzikowska, Representation theorems for some fuzzy logics based on residuated non-distributive lattices, Fuzzy Sets and Systems 159 (2008), 1247-1259.
17. A. Urquhart, A topological representation theorem for lattices, Algebra Universalis 8 (1978), 45-58.
18. M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-354.

Ju-mok Oh received M.Sc. and Ph.D. at Pohang University of Science and Technology. Since 2012 he has been at Kangnung-Wonju National University. His research interests include applied mathematics and enumerative combinatorics.

Department of Mathematics and Physics, Kangnung-Wonju National University, Kangnung 210-702, Korea.
e-mail: jumokoh@gwnu.ac.kr


[^0]:    Received May 17, 2023. Revised August 4, 2023. Accepted August 22, 2023.
    ${ }^{\dagger}$ This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
    (C) 2023 KSCAM.

