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VECTORIAL HILFER-PRABHAKAR-HARDY TYPE
FRACTIONAL INEQUALITIES

GEORGE A. ANASTASSIOU

ABSTRACT. We present a variety of univariate and multivariate left and
right side Hardy type fractional inequalities, many of them under convexity,
and other also of L, type, p > 1, in the setting of generalized Hilfer and
Prabhakar fractional Calculi.
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1. Background

Let —o0 < a < b < oo, the left and right Riemann-Liouville fractional inte-
grals of order o € C (R (a) > 0) are defined by

(1, f) () = %a) / @0 f (1), (1)

x > a; where I" stands for the gamma function,

and
a _ 1 b a—1
(1) @) = e [ €= ey )

x <b.
The Riemann-Liouville left and right fractional derivatives of order o € C
(R (o) > 0) are defined by

@@= () @@= o () [ -0y
®)

(n=]R (a)], [-] means ceiling of the number; z > a)

@89 @) = (1" (7)) @) )=
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(n=[R(a)]; x < b), respectively, where R («) is the real part of .
In particular, when o =n € Z, then

(A1 y) (z) = (A)_y) (=) =y (x);

(Anyy) (z) =y (), and (Af_y) (z) = (~=1)"y") (), neN,
see [12].

Let a > 0, I = [a,b] C R, f an integrable function defined on I and ¢ € C* (1)
an increasing function such that ¢’ (z) # 0, for all x € I. Left fractional integrals
and left Riemann-Liouville fractional derivatives of a function f with respect to
another function ) are defined as ([9], [12])

1 / v ( — () f (8 dt, (6)

()

and

0 f (a) = (¢1( o )"I:;“’wfm) _ )

1 1 / _ n—a—1
e (w/mdx) [ owe-varro

respectively, where n = [«].
Similarly, we define the right ones:

e / W ( — (@) (1) dt, (8)
and

APV f (@) = (—@jﬁj) [ (@) =

no b
s rma) [ Oe-ver T e o
The following semigroup property holds; if a, 8 > 0, f € C (I), then
VISV F=TI00YF and LYIDYVf = 10700 f
Next let again o > 0, n = [a], I = [a,b], f,1p € C™(I) : ¢ is increasing and
' (x) # 0, for all z € I. The left ¢-Caputo fractional derivative of f of order «
is given by ([1])

D2 @) = 1 (s ) 1@ (10)

and the right ¢-Caputo fractional derivative ([1])

D @) = (< s ) @) (1)
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We set

@ =110 = (G2 Fo- (12)

Clearly, when o = m € N we have
Dy’ f (@) = £ (@) and CDRYf (@) = (~)" £ (),
and if @ ¢ N, then

D) = e | ¢ O@@ e Oy P

and

n b
C noy _ i/ / . n—a—1 p[n]
Dy f () = Tn—a) ). P () (¢ (1) = o (2) p (Hdt. (14)
If ¢ (x) = x, then we get the usual left and right Caputo fractional derivatives
D f () = £ (x), DS (@) = (=)™ f (),
for m € N, and (o ¢ N)

D5.f (@) = ODEf (@) = g [ @0 O e ()

— n b
DY (2) = DY f ()= ot s [ =0T O e (10

Also we set
Dy f(x) = DYV () = £ (2).
Next we talk about the v-Hilfer fractional derivative.

Definition 1.1. ([14])) Let n — 1 < a <n,n € N, I = [a,b] C Rand f,¢ €
C™ ([a,b]), ¢ is increasing and ¢’ (x) # 0, for all x € I. The w-Hilfer fractional
derivative (left-sided and right-sided) ¥ ]D:f(f’_) f of order a and type 0 < 8 < 1,
respectively, are defined by

: —a); 1 d\" (1-p)n-a);
Hﬂ]f%ﬁﬂb _ 15(” a)stp el I(l B)(n—a)yp 1
a+ (JJ) a+ ’(/J/ ($) d.’E a+ f (JJ) 9 ( 7)
and
. —a): 1 d\"  (1-8)(n-a):
H]D)OQBJ/} _ [,3(” ayy [ i I(l B)(n—a); (1
b— f (.’13) b— 1}[), (1,) d.’ﬂ b— f($)7 YIS [a7b] ( 8)

The original Hilfer fractional derivatives ([13]) come from ¢ (z) = z, and are
denoted by HDZ‘f (z) and H]D)Z‘;ﬁf ().

When 5 = 0, we get Riemann-Liouville fractional derivatives, while when
B =1 we have Caputo type fractional derivatives.

We define vy = o+ 5 (n— «). We notice that n —1 < a < a+pg(n—a) <
a+n —a=n, hence [y] =n. We can easily write that ([14])

DS f (@) = ALY f (), "
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and
HID?;B;wf (x) = Ig:a;wAZfZ’f (z), =€lab]. (20)
We have that ([14])
L d\" (1-8)(n-a);
810 = (Ggas) B @), @)
and
b 1 d\" a-mm-apw
821w = (- i) f@). (22)
In particular, when 0 < o« < 1 and 0 < 8 < 1; vy = a + (1 — a), we have that
D) = e [ V00 )T A O (23
and
DS (@) = s [ W OO s AR a, o
x € [a,b)].

Remark 1.1. ([14]) Let p =n (1 — ) + Ba, then [u] =n.
Assume that g (z) = I(El!’g)(nfa);wf (x) € C™([a,b]), we have that

. 1 d\"
Hipyo B — Y ° . 2
U@ =1 ) 0@ (25)
Thus
TR = ODY g () = CDY [P p (@) (26)

Assume that w (z) = Iéiﬁﬁ)(nfa);wf x) € C™([a,b]). Hence

(
a,Bi _ pBn—a)yp [ 1 i " I TRV 1 i !
H]Db_ flz)=1" < 7@ dx) w(x)=1I," B ( e dx) w(x).

Thus
HD?Lﬁ;wf _ CD;jf"w (x) _ CDgiw (Iéifﬁ)(n*a)ﬂbf (m)) ) (28)

We mention the simplified ¢-Hilfer fractional Taylor formulae:

Theorem 1.2. (see also [14]) Let ¢, f € C™ ([a, b)), with ¢ being increasing such
that ' (x) # 0 over [a,b], wheren—1 < a<n,0< <1, andy=a+8(n — ),
x € [a,b]. Then

i = k(ﬁ; fln¥ (Iélgﬁ)(nfa);wf) () =
k=
1 " a=1 Hpyao,B5
o [ Oe@-s@) T g a 20)
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and
nfl
W O0) =¥ (@) " aen (18 (-a; _
Z NCEyss e S IOR
1 b 1 .
T / (0 (0 (8) — ()™ TDEAf (1) d. (30)

Here notice that (I(Srﬁ)(n—o‘)"pf) (a) = (Iéi_ﬁ)("_a)wf) (b) = 0.

We also mention the following alternative -Hilfer fractional Taylor formulae:

Theorem 1.3. ([4]) Let f,¢ € C™ ([a,b]), with ¢ being increasing, ' (x) # 0
over [a,b] CR, a>0:[a]l=n,0< <1, pu=n(l-p)+ Pa. Assume that
9(@) = L7V (@) w @) = ROV (@) € O (b)),

Then

1
) Ha (@
L DRI (@) = g () = Y- = W) — e @), (D)
k=0 )
where .
91[5] (37) = (’l/)’l(x)dd:r> 9(33)7 k=0,1,...,n -1,

and

2)

[ HDOB g () — w(x)_ZT(w(b)—w(x))k, (32)
where

w[k](x)—<ld)kw(x) k=0,1,...,n—1; z € [a,]]
v v , k=0,1,.., ; ,b].

Next we list two Hilfer fractional derivatives representation formulae:

Theorem 1.4. ([4]) Let o > 0, a ¢ N, [a] =n, 0 < S < 1; f € C"([a,b]),
[a,b] C R; and set v = a + B (n— ). Assume further that A}, f € C ([a,b]) :
AV 7 f(a)=0, forj=1,...,n. Letalsoa > 0: [a| =7, withy =a+p (7 — ),
and assume that o > @ and v > 7. Then

1 “ T — a—a—1 Hma,B
el AR DILT(dr,  (3)

MDY f (2) =
Ve lab], B
furthermore H]D)Z‘ff € AC ([a,b]) (absolutely continuous functions) if a—a >

1 and FDTL f € C ([, b)) if « —@ € (0,1).
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Theorem 1.5. ([4]) Let a > 0, a ¢ N, [a] =n, 0 < < 1; f € C"([a,b]),
[a,b] C R; and set v = a+ (n— ). Assume further that A]_f € C ([a,b]) :
A)Tf()=0,j=1,..,n. Letalso@ > 0: [a@| =7, withy =a+ (7 —a),
and assume that oo > @ and v >7%. Then

1 b a—a—1 Hno,B
el W Dpff @, (34)

DRI f (2) =

V€ la,b], B B

furthermore H]D)g‘;ﬁf € AC (Ja,b]) if a —a > 1 and H]D)g‘;ﬁf € C([a,b]) if
a—ae(0,1).

The fractional integral operator I3, f and I f, a > 0, are bounded in
Ly, (a,b), 1 <p < oo, that is

2 fl, < KNflLs (12 fIl, < KNI (35)
where o o
K=ta+n (36)

The left inequality (35) was proved by H.G. Hardy in one of his first papers,
see [8].

We continue this Background section with the following material from [5],
where the author introduced the genralized -Prabhakar type of fractional cal-
culus and mixed it with the ¢-Hilfer fractional calculus.

So we consider the Prabhakar function (also known as the three parameter
Mittag-Laffler function), (see [7], p. 97; [6])

g o
Fe, Z HE (k19 (37)

where I' is the gamma function; o, 5,7 € R : o, > 0, z € R, and (), =
YOy +1) . (y+k—=1). Ttis EY 5 (2 ):%ﬁ)
Let a,beR,a <band x € [a b] f € C([a,b]). Let also v € C! ([a,b]) which
is increasing. The left and right Prabhakar fractional integrals with respect to
1 are defined as follows:

(Fitand) @) = [0 @O0 @) =0 0 Bl @) - w01 Ot
)

and

(Font) @ = [ ¥ OO -6 @F Bl @0 - v @)1 O
)

where p, p > 0; v,w € R.
Functions (38) and (39) are continuous ([5]).
Next, additionally, assume that ¢’ (z) # 0 over [a, b].
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Let v, f € CY ([a,b]), where N = [u], ([] is the ceiling of the number), 0 <
u ¢ N. We define the i-Prabhakar-Caputo left and right fractional derivatives
of order 1 as follows (z € [a, b)):

(OD3fncd) @ = [ 4 0 @) - v

N
By o (0 (a) — 6 () (mi) or (40)
and
(D3 t) 0= 1Y (vt b (@)
N
B ulo @) - v @)l ( w,l(t) jt) o (a)
One can write these (see (40), (41)) as
(CD’YMwa—&-f)():(epN lel-i-flll )()’ (42)
and
(D8 1) @) = (DY (8 i £ (@), (43)
where
N
@ =110 = () 1@, (44)
Ve lab.

Functions (42) and (43) are continuous on [a, b].
Next we define the -Prabhakar-Riemann Liouville left and right fractional
derivatives of order u as follows (x € [a,b]):

(D3 s) @) = () / v (o)
By, 0 ()~ (0] ()t (49
and
(D3 1) (@ )—( o dx) /w b ()N
Byl (6 (0) — b (@)°] £ ()t (46

That is we have

(D3t @) = (55 ;L)N (53 ) @), 4D

and

("Dt f) (@) = (@Q)N( A £) @) ()
YV x € [a,b].
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We define also the 1-Hilfer-Prabhakar left and right fractional derivatives of
order p and type 0 < g < 1, as follows

1 d\" _a_p
Hyv.B5¢ e 1Bi¥ Y(1=B)5%b
( Pobtst, a+f> () = €, BN -y w,at (w’ (z) dx) €p,(1=p) (N wrat T (2)

(49)
and
Hp B3 o185 LA\ apw
( Psbtyw,b— f)( )= €0,B(N—p),w,b— (de> ep,(lfﬁ)(j\f*#)vw-,b*f(x)’
(50)
vV x € la,b).

When S = 0, we get the Riemann-Liouville version, and when 8 = 1, we get
the Caputo version.

We call ¢ = p+ B(N —pu), we have that N — 1 < p < p+ (N —p) <
p~+ N —p= N, hence [£] =

We can easily write that

1
(DRt aid ) @) = 200 s PEDICN (@), (51)
and
. —~f: 1—
("Dt f) @) = 100 PO @), (52)
vV x € la,b.

In this article we prove univariate and multivariate Hardy type inequalities
based on the above mentioned fractional background and convexity of functions.
Our work is inspired by [2], [3], [8], [10], [11].

2. Prerequisites

I) Here we follow [3], p. 441, see Chapter 22.

Let (21, %1, 1) and (Qg, 3, u2) be measure spaces with positive o-finite mea-
sures, and let k; : Q1 x Q9 — R be nonnegative measurable functions, k; (z,-)
measurable on €2, and

K, (z) = /Q ki (2,) dyiz (), for any @ € Q, (53)
2

i=1,..,m € N. We assume that K; () > 0 a.e. on ; and the weight functions
are nonnegative measurable functions on the related set.
We consider measurable functions g; : {23 — R with the representation

6i (@) = /Q ki (@.9) fi (v) dyez (3) (54)

where f; : 2o — R are measurable functions, ¢ =1, ..., m.
Here u stands for a weight function on €; (v > 0, which is measurable).
We will use the following general result:
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Theorem 2.1. ([3], p. 442) Assume that the functions (i = 1,2,...m € N)

T — (u (x) ’}}(7?;’))) are integrable on Q1, for each fixed y € Qo. Define u; on Qs
by

u; (y) = /Q u(x) ki (:v,y) duy (z) < oo. (55)

m
Letp; >1: > i = 1. Let the functions ®; : Ry — R4, i =1,...,m, be convex
i=1""

and increasing.
Then

) dp () <

1

f[l </Q ui (y) @i (|fi (W))"* dpo (y)) " (56)

for all measurable functions f; : Q2 — R (i =1,...,m) such that

(i) fi,®; (|f:DF", are both k; (x,y)dus (y) - integrable, pi-a.e. in v € €,
1=1,...,m,

(ii) u; ®; (| fi|)*" is pg-integrable, i = 1,...,m,

and for all corresponding functions g; (i =1,...,m) given by (54).

IT) Here we foolow [3], Chapter 27.

The basic setting follows:

Let (Q1,%1, u1) and (Qg, Xo, p2) be measure spaces with positive o-finite mea-
sures, and let k : €3 x Q2 — R be nonnegative measurable functions, k (z,-)
measurable on €2, and

K(z) = /Q k(x,y)dus (y), for any z € Qy, (57)

i=1,....,m € N. We assume that K () > 0 a.e. on 7 and the weight functions
are nonnegative measurable functions on the related set.
We consider measurable functions g; : 21 — R with the representation

mm=4kmwﬁ@wmm (58)

where f; : 5 — R are measurable functions, i =1, ..., n. _
Denote by & =z := (21, ...,xn) € R™, §:= (91, .., 9n) and [ := (f1, ..., fn)-
We consider here @ : R} — R a convex function, which is increasing per
coordinate, i.e. if x; <y;, i =1,...,n, then ® (21, ...,2,) < P (Y1, ey Yn) -
Next we may write

amzékmwﬂwm@» (59)
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which means

(01 ()0 g (2)) = ( | b 5 @i @) s [ o) 12 ) <y>) |

Similarly, we may write

(y) dpz (y)] (61)

§\
>~
=
S
y

and we mean

(lg1 (@)] 5 s [gn (2)])
= (/Q k(x,y) f1(y) dpz (y)

We also can write that

G@I < | k|76 de ), (63)

g eeey

[ e g ) e <y>]) @

and we mean the fact that
l9: ()] < /Q k(e y) £ ()] dpa (). (64)

forall i =1,...,n, etc.

More precisely here we follow:

Let (Q1, %1, u1) and (Qg, Yo, o) be measure spaces with positive o-finite mea-
sures, and let k; : Q1 x Q2 — R be nonnegative measurable functions, k; (z, )
measurable on 9, and

K; (3:):/Q ki (z,y)dps (y), v €, j=1,...,m. (65)

We suppose that K; (z) > 0 a.e. on Q. Let the measurable functions gj; : Q1 —
R with the representation

gji (z) =/Q kj (w,y) fii (v) dpz (y)
written also as
5@ = [ k@) F ) ). (66)

where f;; : Q2 — R are measurable functions, i =1,...,nand j =1,...,m.
We denote above the function vectors g; := (gj1, gj2; ---, gjn) and

fj = (fjla ey f]n) ) .] = 17 ceey T

We say f; is integrable with respect to measure p, iff all f;; are integrable
with respect to pu.

We also consider here ®; : R} — R, j = 1,...,m, convex functions that are
increasing per coordinate. Again u is a weight function on €.

We will use the following theorem
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Theorem 2.2. ([3], p. 628) Assume that the functions (j = 1,2,....,m € N)
T — (u (x) M) are integrable on Qy, for each fized y € Q2a. Define u; on Qs

) K;(z)
)
() = / w(@) Y g (@) < o (67)
! (oN) K;(z)
Letp; >1: )" % = 1. Let the functions ®; : R} — Ry, j=1,...,m, be conver
g=1"

and increasing per coordinate.

Then
/Qlu(m)il:[l@(
11

Jj=1

gj (v)
K (z)

) dpa () <

/ uj (y) 5 (‘ﬁ (y)’)pj dpa (y)> " ; (68)

under the assumptions:
o S\ Pi
(1) f;, ®; (‘fJD ], are both kj (x,y) dus (y) - integrable, pr-a.e. in x € 4,
j=1,...,m,
S\ Ps
(1) u;®; (‘fJD s uo-integrable, 7 =1,...,m.
IIT) We will also use from [3], Chapter 26, the following theorem:

Theorem 2.3. (3], p. 598) Let p € {1,...,m} be fivzed. Assume that the function
u@) [1 k()

x — | —a———— | is integrable on 1, for each y € Qa. Define A, on Qg by
1 K; ()
j=1
u@ [1 k@9
A )= [ | dpr (2) < oo (69)
= I Kj (z)

Let the functions ®; : R? — Ry, j = 1,...,m, be convexr and increasing per
coordinate. Then

2

H/QQ P (‘f}(y)’) duz (y) (/Q ‘I’p(
under the assumptions:
i) .0, (|1

m

), are k; (z,y) dus (y) - integrable, pi-a.e. inx € Qq, j =
1,
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0 20 (7)< 0 () () 9 (7)o 90 (5

are all po-integrable,
and for all corresponding functions g; given by (54). Above ®, (‘f;D means

f f2

) ([,

——

a missing item.

Above all symbols are as in (II).

3. Main Results
1)’ Here we apply Theorem 2.1.
Letherepl—>1:z%:1.
= P

We present
Theorem 3.1. Here i = 1,...m. Let a; >0, a; ¢ N, [e;] = n;, 0 < 3; < 15
fi € C™ ([a,b]), [a,b] C R; and set v; = a; + 3 (n; — ;). Assume further that
AV fi € C(la,b]) - AY 7 fi(a) =0, for ji =1,...,n;. Let also @; >0 : [a;] =
g, with 7, = a; + B; (M; — @;), and assume that o; > @; and v; > 7;.

Let also ®; : Ry — Ry, i = 1,...,m, be convex and increasing functions;
u > 0 is a weight measurable function on [a,b]. We assume that

b (1. _ y)(aifai)fl
i) = (e~ ) [ @) e <, (71)
g (l‘ _ a) Q; — Oy
for all a < y < b and u; is Lebesgue integrable.
Then
v (DR ()
u@) || 2| ———F—="T(x—a@+1)|dr <
/a };[1 (x—a)™" ™
1
i b s, Bi pi b
I ( [ (2 (|02 5 ) dy> . (72)
i=1 \/¢@
Proof. By Theorems 1.4, 2.1 and from [2], pp. 31-33, see relations there (2.40)-
(2.47). O

Remark 3.1. (to Theorem 3.1) One can have ®; =identity map or e®, or
D, (x) =aPi, z € Ry, p;, > 1, ete.

To save space in this work we skip these interesting applications here and
later.

We continue with

Theorem 3.2. Herei=1,..,m. Let a; >0, o; ¢ N, [a;] =y, 0 < B; < 1;
fi € C™ ([a,0]), [a,b] C R; and set v; = a; + Bi (ni — ai;). Assume further that
A fi e C(lab]) : AT fi (b)) =0, §; = 1,...,n;. Let also @; > 0 : [a;] = 7y,
with 5, = @; + 5; (m; —@;), and assume that o; > @; and v; > 7,;. Let also
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D, : Ry — Ry, i = 1,...,m, be convex and increasing functions; v > 0 is a
weight measurable function on [a,b]. We assume that

y (y — l.)(a'i_ai)_l
w; (y) = (a —@i)/ u (@) = dr < 0, (73)
a (b — .’L') Fim
for all a <y < b and u; is Lebesque integrable.
Then B
o (DR )]
/a 7:H1 (b _ fL‘) i i
/o TRV
IT( [ (o ("o s w)]) ) (74)
i=1 a
Proof. By Theorems 1.5, 2.1 and from [2], pp. 35-37, see relations there (2.58)-
(2.67). O

We continue with

Theorem 3.3. Herei = 1,....m. Let f; € C™ ([a,b]), § := max{ny,..,nm},
Y € CY([a,b]), with ¢ being increasing: ¥ (x) # 0 over [a,b], where n; —1 <
a; <n;, 0< B <1, and v; = oy + Bi (ni — ).

Assume that fz[sz] (Itglgﬁi)(nro”);wfi) (@) =0, ki = 1,...,n;, — 1; i =
yeees M.

Let also ®; : Ry — Ry, ¢ = 1,...,m, be convex and increasing functions;
u > 0 is a weight measurable function on [a,b]. We assume that

b o;—1
o [ @)~ Y )
P = e @) [ ue

foralla <y <b and uf} is Lebesgue integrable.

Then
T (L E@L Y
/“(”C’H@((w(w—wa))“i” ’*”)d :

a =1

1

dz < oo, (75)

ﬁ ( / " e (| (e ) )" dy> - (76)
true for contiml;;s Apeifsv f, i =1,..,m.

Proof. From (29) we get:

F@) = ey | ¥ O@@ -0 DR G, ()
Vac€lab;i=1,..,m.

Then we apply Theorem 2.1, along with [2], pp. 47-49, see the relations there
(2.107)-(2.119). O
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We also give

Theorem 3.4. Here i = 1,...m. Let f; € C™ ([a,b]), § := max{ny,...,nm},
Y € CY([a,b]), with ¢ being increasing: ¥ (x) # 0 over [a,b], where n; —1 <
a; <ng, 0< 5, <1, and v; = a; + B; (ny — ;).
Assume that fi[:;"*ki} (Ilgl:’gi)(n/"*ai);wfi) ® =0,k =1,...,n —1; i =
1,...,m.
Let also ®; : Ry — Ry, i = 1,...,m, be convex and increasing functions;

u > 0 is a weight measurable function on [a,b]. We assume that
Viy) — @)
(¥ (b) — ¢ ()™

foralla <y <b and Ef} is Lebesgue integrable.
Then

W ) =a' ) [ ua) ¢ dz < oo, (78)

m

/abu(x) H‘I’i (W(lﬁ(z)('x))ar (o + 1)) dr <

i=1

1

fi([ oo nol)s)’. o

i=1 @
true for continuous HID)?i‘ﬂ“/’fi, i=1,..,m.

Proof. From (30) we get:

b
; @):ﬁ / W) (6 (1) — v (@)% TDER L (1 dt, (80)

Vac€lad;i=1,..,m.
Then we apply Theorem 2.1, along with [2], pp. 51-53, see the relations there
(2.132)-(2.142). O

We present

Theorem 3.5. Herei = 1,....m. Let f; € C™ ([a,b]), 6 := max{ni,...,nn},
Y € C%([a,b]), with 1 being increasing: ' (x) # 0 over [a,b] C R, a; >
0: [ag] =mni, 08 <1, up =n;(1—0;) + Bi;. Assume that g; (z) =
Iérﬂi)(nﬁai);wfi (z) € C™ ([a,b]), and gl[Zf} (a) =0, k; =0,...,n; — 1, where

k.
k; *
Let also ®; : Ry — Ry, i = 1,...,m, be convex and increasing functions;
u > 0 is a weight measurable function on [a,b]. We assume that

b@) =)
()~ ()"

foralla <y <band )\j’ s Lebesgue integrable.

b
N ) =it ) [ o) v < oo, (81)
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Then N
/ };[1 @i ( 9l (¢)(|a))m T (pi + 1)) dx <
ﬁ (/b N () (’(HDgiﬁ“wﬁ) (y)Dpi dy) Ey (82)
i=1

a;, 5qﬂ/’f

true for continuous HID) 1,...,m.

Proof. From (31) we get that
g: (@) = I3 TDE () (83)
Vaelabl;i=1,..,m
Then we apply Theorem 2.1, along with [2], pp. 47-49, see the relations there
(2.107)-(2.119). O
We also give

Theorem 3.6. Herei = 1,....m. Let f; € C™ ([a,b]), 6 := max{ny,...,nm},
1/) € C%(la,b]), with ¥ being increasing, ' (x) # 0 over [a,b] C R, a; >
[al] = nl, 0< B <1,y =n;(1=p5;)+ Picvy. Assume that w; (x) :=
I(1 Pu)ni—ea)ib ¢ (z) € C™ ([a,b]), and w[k](b) =0,k =0,....,n, — 1, where
ki
Let also ®; : Ry — Ry, i = 1,...,m, be convex and increasing functions;
u > 0 is a weight measurable function on [a,b]. We assume that

N LN C10) 10 G
5w =t @) @ G e <o (80

foralla <y <b and X?) 1s Lebesgue integrable.

Then N
/ » ][ (%F (s + 1)) dr <

i=1

1

Pq

fi([ T om(eoeao)s)’ o

i=1

H}D)Z‘i’ﬁ“wfi, 1=1,..,m.

true for continuous
Proof. From (32) we get that
w; () =I5 DR £ (), (86)

Vaé€lad,i=1,..,m
Then we apply Theorem 2.1, along with [2], pp. 51-53, see the relations there
(2.132)-(2.142). O

We continue with



330 George A. Anastassiou

Theorem 3.7. Herei=1,...,m. Letn; —1 < a; <my, n; €N, I =[a,b] CR
and fi € C™ ([a,b]), 0 := max {ni,...nm}, ¥ € C?([a,b]), ¢ is increasing and
' (x) £0, forallz € I. Here 0 < 3; <1 and v; = a; + B; (n; — ;). Assume
that Agﬁf”A%‘/’f eC(a,b]),i=1,...m
Let also ®; : Ry — Ry, i = 1,...,m, be convex and increasing functions;
u>01isa wez’ght measurable function on [a,b]. We assume that

W () — 1 (y) 0!
(¥ (x) — 1 ()7

foralla <y <band )\:;ﬂ_ is Lebesgue integrable; and

Y — T (yi—a)—1
A (y) = (i — o) Y/ (y)/ u (@) (¢ (y) — ¥ (x))

dzr < oo, (87)

b
N ) = (v’ ) [ @) (

dx < oo, (88)

a (0 (b) = 9 ()7
foralla <y <b and Aj’_ is Lebesgue integrable.
Then
i)

oo m IR (o)
u(x P, — T (yi —a; +1) | dox <
/ @]le | oyt it

1

) dy) " (89)

1 ( / N )@ (|(82575) W)

=1
and
ii)
b [ s ()
u () i ——T (v —a; +1) | dx <
/a 11;[1 (W () = ()™
i b . Pi i
II / A (y) @ (‘ (Aliwfi) (y)’) dy| . (90)
i=1 \”@
Proof. By (19) and (20), respectively, we have that
DR £ (@) = LT ALY fi (), (91)
and
HDpePsv £ () = [ AJEY fi (), (92)

Vaé€lad,i=1,..,m
Then, we apply Theorem 2.1 twice, along with [2], pp. 47-49, see there
(2.107)-(2.119), and [2], pp. 51-53, see there (2.132)-(2.142), respectively. O

We make
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Remark 3.2. We pick Q1 = Qs = (a,b), duy (x) = dzx, dus (y) = dy, the
Lebesgue measure. Here i = 1,...,m. Let p;, pi,vi,w; > 0, and f; € C([a,b]),
with ¢ € C* ([a,b]) which is increasing.

We have that (z € [a, b]):

(ep S Wi a+f1)( )*
/ ' W (1) (@ (@) = OV T EY, [wi (@ (2) = ()] fi () dt (93)

b
=/ (o] (80 (0) (0 (@) = (&))" B, i (9 (2) = (1)) £ (1) dt,

a
where x is the characteristic function.
So, we choose here

ki (2,8) 5= X(aw) ()0 (8) (9 (2) = ()" 7 B, lwi (9 (2) =9 (£))”], (94)
i=1,...m
That is

b (o) U () W (x) = @) EY, [wi (0 () = ()], a<y<a,
) yY) =
0, z<y<b,
(95)
1=1,...m
Therefore we obtain

b
K (2) = / Xeaa] 00 () (6 (@) — 6 @) BL o for (6 (2) — 6 (1)) dy =

/z W (y) (@ (@) = )" T B, [wi (0 (2) =9 (1)) dy =

(by [3])
c- (pikitpi)—1 _
; sz +/~% / w ( )) : dy =
3 Wit (0 () — (@) "
z_; pzk + Uz) (piki + /-Li) a (96)
piyki _
(¢ ( Zw pzkmﬂ)(wz—(w(m—wa» ) =
(¥ (@) = 9 (@) Bp 41 i (6 (@) = 9 (a)"].
That is

Ki(z) = (¢ (2) =9 (@)™ Bl [wi (¥ (2) =¥ ()], (97)

Vaé€lab,i=1,..,m.
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Notice that

Bi (2,1) _ Xaa) 00 () (0 (2) = )" B, i (4 (2) = ¥ ()] (98)
K (x) W (2) = (@) E) 41 [wi (¥ (2) =1 (a)”]
_ sy (@) = )
= (X(a,r] (y) (77[] (y)) (w (l‘) — (a))ui )
EYi i () (x) =4 (9)™']
B! 1 lwi (U (2) = ()] )
YV x,y € [a,b].
Therefore for (55), we get for appropiate weight v > 0 that the Lebesgue
integrable
o _ (z) — 1/1 )"
1+ (y) < (i[ a)) )
00 )P .
(EZ:M[ @) = b (@) 1) s 49

for all a <y < b.
Based on Theorem 2.1 and the above, we have established the following gen-
eralized Prabhakar left fractional Hardy type inequality:

Theorem 3.8. Herei=1,....m. Let p;, i, vi,wi > 0, and f; € C ([a,b]), with
Y € C ([a,b]) which is increasing. The function u;i (y) € R by assumption, V

€ [a,b], is given by (99). Here ®; : Ry — Ry, i = 1,...,m, are conver and
increasing functions. Then

(3itar ) @)
/ H P, ( ()" E) o lwi((x) =9 (a))”] dr <

11 ( / al (w) @ (f: ()" dy) - (100)

i=1

We make

Remark 3.3. We pick Q1 = Qs = (a,b), duy (x) = dz, dus (y) = dy, the
Lebesgue measure. Here i = 1,....m. Let p;, ui,vi,w; > 0, and f; € C([a,b]),
with ¢ € C! ([a, b]) which is increasing.

We have that (z € [a,b]):

(et e ti) (@) =

b
/ W) (6 (1) — 0 (@) B wr (6 (1) — 0 (@) £ (Hdt (101
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b
= / Xty ()9 (1) (% (8) = 0 (@) T B, [wi (9 (1) =4 (2))™] fi (¢) dt,

where x is the characteristic function.
So, we choose here

ki (2,8) = X(a) (D0 (1) (9 (8) = ¢ ()" T EY, lwi (0 (8) — 9 ())™], (102)
1=1,...,m.
That is

W (y) (W (y) = @) TER,, [wi (v (y) - ¢ (2))"], z<y<b,

ki (z,y) =
0, a<y<uz.

(103)

1=1,...m
Therefore we obtain

b
Ki(r) = / Xy W) ¥ () (0 () =9 @) T B, wi (9 (y) — ¢ (2))™ ] dy =

/ W ( b @B ws (1 (y) —  (2) ] dy =
(by [5
ad Yi 7 (pi 4 Ni)—l _
z:: 'Tpkaruz/w (e dy =
Wit (4 () = ()
Z k 'F pzk +Nz) (piki"",ui) B (104)
piyki _
¥ Zm plﬁml)(iw(b)—w(x» ) =
w(b)—w NHED L wi (1 (b) — 4 ()]
That is

Ki(x) = (¢ (b) = ¢ (2))" B} 4 [wi (& (D) = ¢ (2))™], (105)
Vaé€lab],i=1,..m.
Notice that
i (0,9) _ X @)% () (0 ) = ¥ @) B, [0 (6 () — & ()]
K (z) (W () =Y @) E)! 4 [wi (1/) (b) = (2))"]

_ / (w< ) ( ))“'71
(

(Eﬁ:m i (v (y) = x))”] ) (106)

E;’Y:,m+1 [wi (¢ (b) — ¥ 17))[)]
Va,y € la,bl.
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Therefore for (55), we get for appropiate weight v > 0 that the Lebesgue

integrable:
ul (y) = ( ZORTI0)a )
EN: L i (¢( ¥ ()" .
(Epwm-i-l [ Wi (1/]( ) ’(/J (3?)) }) dz < (107)

for all a <y < b.
Based on Theorem 2.1 and the above, we have established the following gen-
eralized Prabhakar right fractional Hardy type inequality:

Theorem 3.9. Herei=1,...,m. Let p;, i, vi,w; > 0, and f; € C([a,b]), with
Y € C* ([a,b]) which is increasing. The function ug)_ (y) € R by assumption, ¥V
y € [a,b], is given by (107). Here ®; : Ry — Ry, i = 1,...,m, are conver and
increasing functions. Then

o ,
(ke 1) @)
[roll* | Grar i, meo e )

II (/ 2. (1f: )" dy> R (108

We continue with left and right i-Prabhakar-Caputo Hardy fractional in-
equalities:

Theorem 3.10. Here i = 1,....m. Let p;,p;,w; > 0, v < 0, and f; €
CNi ([a,b]), Ni = [wi], i ¢ N; 0 := max (Ny, ..., Np), o € C?([a,b]), ¢ is in-

N;
creasing with ¢’ (x) # 0 over [a,b]. Set fi[ﬁi] (x) = (m%) fi(x), z € [a,b)].
We assume that the weight function u > 0 is such that

b ) — (Ni—ps)—1
Ny () = (y)/y u () (%f(i) wﬁl)))uvi—m >
( B [wi (9 (2) =% ()] ) ;
— - xr < 00,
E N i Wi (¥ (2) =4 (a)”]

for all a <y < b, which is a Lebesgue integrable function.
Here ®; : Ry — R4, i =1,...,m, are conver and increasing functions. Then

o (D3 i) @)
/ Ol T R @ e@r) ¢

( / "ot me( ) dy) " (110)

(109)

7w
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Proof. By (42) we have that

i3 i3 N;
(CDziyl’Lfi,wi,a‘Ffi) (x) = (eprNw i ,wi,a+ z[w ]) (SE), (111)
Vaelabd,i=1..,m
We apply Theorem 3.8. O

Theorem 3.11. Here i = 1,....m. Let p;,p;,w; > 0, v < 0, and f; €
CNi ([a,b]), Ni = [pi], pi ¢ N; 0 := max (N1, ..., Nyp), ¥ € C?([a,b]), ¢ is in-

N;
creasing with ' (x) # 0 over [a,b]. Set fi[é)vi] (x) = (m %) fi(z), € [a,b].
We assume that the weight function u > 0 is such that

y _ z (Ni—p;)—1
W)= ) [ u (“é’ﬁb) e )
< B b0 (0 (0) =0 )] ) e
Epl’,YJlVZ pi+1 [wl (¢ (b) - ¢ (Jj))pl]

for all a < y < b, which is integrable.
Here @, : Ry — R, i =1,...,m, are convex and increasing functions. Then

b 1 & .
’(CDZZ;Z}hwi,b—f’L) (x)‘
/a u () g ®; (W (0) = & (@)™ B i (1 (B) = 0 (2))"] dx <

(112)

1

([ oy N [V )
11 A (y) @ ( 1 (y)D dy| (113)
i=1 \/@
Proof. By (43) we have that
(D3 s £) @) = (D™ (8 IR @) (19)
Va€labd,i=1,...,m
We apply Theorem 3.9. (]

Next we present left and right v-Hilfer-Prabhakar Hardy fractional inequali-
ties:

Theorem 3.12. Here ¢ = 1,....,m. Let p;,p,w; > 0, v < 0, and f; €
CNi ([a,b]), N; = [ui], ui ¢ N; 0 := max (Ny, ..., Np), ¥ € C?([a,b]), 1/1 s in-
creasing with ¢’ (z) # 0 over [a b. Here 0 < 8; <1 and & = p; + B; (N; — pi)-
We assume that BL D150 fl € C([a,b]), i = 1,....,m. We assume further

pisiswi a+
that the weight function u > 0 is such that

NP (¥ (z) — m))“w
M) =3 ) [ i) T EpTCED
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B, i (v (2) = ¢ ()]
—viBi pi dx < o,
E, ey wi (¥ (2) — ¢ (a))™]
for all a <y < b, which is integrable.
Here ®; : Ry - Ry, i=1,....m, are convex and increasing functions. Then

Vo (Dt i) (@)
/au(x)infbl W (@) = @) B o (0 (@) = (0)"]

L
H(/ PN e ([P0 ) dy) - (ug)

Proof. By (51) we have that

(115)

dr <

HyYi Bis iBis RL yvi(1=54)
( Dziaﬂiawz a+f’b) ( ) Pz’?&z Piwi,a+ DZ@ &i Wi, a+fZ ( ) ’ (117)
Vaelabd,i=1,..,m
We apply Theorem 3.8. O

Theorem 3.13. Here i = 1,....m. Let p;,p;,w; > 0, v < 0, and f; €
CNi ([a,b]), N; = [ui], pi ¢ N; 0 := max (Ny, ..., Np,), ¥ € C?([a,b]), w is in-
creasing with ¢’ (x) # 0 over [a,b]. Here 0 < 8; <1 and & = p; + Bi (N; — p;)-
We assume that RLD%(1 ﬁwal € C([a,b]), i = 1,....,m. We assume further

pir&i,wib

that the weight function uw > 0 is such that

Yy (§i—pi)—1
AL W)= ) [ u ( pl) ) )
g (0 (b) = ()™
E—’Yiﬁi ;
( it 0 W)~y @) ) e s,
B i wi (9 (0) =4 (2))7]
for all a <y < b, which is integrable.
Here @, : Ry — Ry, i =1,...,m, are convex and increasing functions. Then

/ Hq» (et o i) (@)
— @) B e (0 () — v ()]

dr <

1

) dy)pi. (119)

m

I1 ( / " @ (D 2 )

i=1
Proof. By (52) we have that
H 77ﬁ1 lﬁl7w RL T 1 /B w
(MDYt i) @) = G e DR LN @), (120)

Va€lad,i=1,..,m
We apply Theorem 3.9. O
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IT)’ Next we apply Theorem 2.2.
We present the following result.

Theorem 3.14. Here j = 1,....m. Let pj, pu;,vj,w; > 0, and f;; € C([a,b]),
i = 1,....n; with ¢ € C'([a,b]), which is increasing. For appropiate weight
u > 0, we assume that

b pi—1
o P (@ =P @)
W ) =) | <><(w($)_w(a))ﬂj>

E) . [w; — Pi
’YfJ’/‘l’J [wJ (w (.1?) '(/) (y)) p]j dr < 0, (121>
E) a1 wi (¥ () = 4 (a)™]
for all a <y < b, which is integrable.
Letp; >1: )" % = 1. Let also the functions ®; : R}? — Ry, j=1,...,m, be
j=1""

convex and increasing per coordinate. Then

(4 ) @)

b
[ | G @ B, b 0@

ﬁ(/ uly ()@, (

Proof. By Theorem 2.2, see also Remark 3.2. O

1

hw|)” dy> B (122)

We continue with
Theorem 3.15. Here j = 1,....m. Let pj, pu;,vj,w; > 0, and f;; € C([a,b]),

i = 1,..,n; with ¢ € C([a,b]), which is increasing. For appropiate weight
u > 0, we assume that

o o yu . (W (y ) (:17))#7‘—1

EY (s _ Pj
'y?J s [wJ (¢ (y) 1/} (.T)) pz|7. dz < oo, (123)
By a1 wi (4 (0) =9 ()]
for all a <y < b, which is integrable.
Letp; >1: > i = 1. Let also the functions ®; : R} - Ry, j=1,...,m, be
g=1"
convex and increasing per coordinate. Then

(pm] b fg)()

b
[ @l | o @ B e e

dr <
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1

fi(f oo (o) s)” o

Proof. By Theorem 2.2, see also Remark 3.3. O
We also give

Theorem 3.16. Here j = 1,...m. Let pj,pj,w; > 0, v; < 0, and fj; €
€™ ([a,b]). Ny = )y @ N: 0 1= max (N, N 0 € C° (8] 0 s in-

creasing with ' (x) # 0 over[a,bl; i =1,...,n. Set fj[i\f;] (x) = (d) 1) dm) fi(z),
x € a,b]. We assume that the weight function u > 0 is such that

b z) — (Nj—pj)—1
N =) [ i) (“f B )

( B o (0 (2) =9 (1)) )
m— o | dv < oo,
B N 1 Wi (¥ (@) = (a))™]

for all a <y < b, which is integrable.

Letp; > 1: '21 p% = 1. Let also the functions ®; : R} — Ry, j=1,....m, be
j=

(125)

conver and increasing per coordinate. Then
—_— s
3%
(CDZ;»vawjaa"rfj) (x)
g Nj—=pj o= j
B @@ = @) E, iy (0(2) — ()]

ﬁ (/b N, (y) @; ( )pj dy>plj. (126)

Proof. By Theorem 3.14 and (42), see also (111). O

dr <

Jm (y)

Y

We continue with

Theorem 3.17. Here j = 1,...m. Let pj,pj,w; > 0, v; < 0, and fj; €
€ ([ab). Ny = 1)y & N 0 5= max (N, Ny 6 € C° (8] 0 i in-

creasing with ' (x) # 0 over [a,bl; i =1, ..., n. Setf[N]( )—(w(m dm) fii (x),
x € [a,b]. We assume that the weight functzon u > 0 is such that

y — ) () Bk =L
N (y) = (y)/a u (z) (“fﬁi) _wd}((i)))(zvj—m )

E*'YJ’ . _ ]

( b e (0 (0) = ¥ )" ) e (12
E, Ny [wi (@ (0) =2 (2))™]

for all a <y < b, which is integrable.
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m
Letp; >1: )" % = 1. Let also the functions ®; : R} =R, j=1,...,m, be
g=1"

convez and increasing per coordinate. Then

—
5%
(D% 1) @

b m
(z) || P — — | dz <
f e | o —ar— E el @0 —w @) |
N =1 N\
H (/ N () ‘Pj( e (y)D dy) : (128)
Proof. By Theorem 3.15 and (43), see also (114). O

We continue with

Theorem 3.18. Here j = 1,...m. Let pj,pj,w; > 0, v; < 0, and fj; €
cNs ([a,b]), N; = LU'J'L Hj ¢ N; 0 := max (Ny,...,Np), ¥ € c? ([a,b]), o i
increasing with ¢’ (x) # 0 over [a,b]; ¢ = 1,..,n. Here 0 < B; < 1 and §;
i + B (Nj — pj). We assume that RLDZ;,(glj,o%,)aﬁfﬂ € C(la,b]), j=1,....m
and i =1,....,n. We assume further that the weight function u > 0 is such that

b ) — (&—ny)-1
P/\;PJr (y) == 0y (y)/y u () (%ﬁ; (;) _ww(y(l)))(sj—m )

B, Ty (9 (2) — ¢ ()]

Yj ﬂ]

E, 87w (0 (2) = ¥ (a)™]

for all a <y < b, which is integrable.
m
Letp; >1: %" p%_ = 1. Let also the functions ®; : R}? - Ry, j=1,...m, be
j=1

=
V)

< o0, (129)

convex and increasing per coordinate. Then

; \ (HDZji:ﬁj iij,a+fj) (@)
/au H‘I’j (@ (2) = (@) B0 s (8 () = ()]

1

ﬁ</ T ”’”(Km)()‘)p@) (130)

Proof. By Theorem 3.14 and (51), see also (117). O

The counter part of the last theorem follows:
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Theorem 3.19. Here j = 1,...m. Let pj,pj,w; > 0, v; < 0, and f;; €
cN ([a’b])7 N; = |—:uj-|; Hj ¢ N; 0 := maX(N1a~-~7NM)7 (UM c? ([aab])7 (L
increasing with ¢’ (z) # 0 over [a,b]; i = 1,..,n. Here 0 < 3; <1 and §;
pi + B (N; — ). We assume that RLDZJ% 57 wfjz € C(la,b]), j =1,.

andi=1,...,n. We assume further that the weight function u > 0 is such that

PAY () = o () [ (e (w(y)—w(x))(j_’”)_1>
i) = (y)/a ( )( TG

B g (6 (y) — ¢ (2))]
i 51

B,y (6 (6) — ¥ ()]
for all a < y < b, which is integrable.

Letp; > 1: 21 p%_ = 1. Let also the functions ®; : R} - Ry, j=1,...,m, be
i=

~
V)

dzr < oo, (131)

convex and increasing per coordinate. Then

T —
("D n) @
o\ @O e @) B e (6 (06) = ()]

([ s we (e i) ol )o)”. o

Proof. By Theorem 3.15 and (52), see also (120). O

IIT)’ Here we apply Theorem 2.3.

Based on (69) and Remark 3.2, we get for appropiate weight u > 0 that
(denote this particular A, by Xi ) the integrable function:

£ sy
b _ j=1
Mo )= @ )" [ ) | LI
Yy Z Ky

ﬁ B3 [ (0 (@) = 0 ()]
B 0 (0 @) =¥ (@)”]

for all a <y < 0.
By Theorem 2.3 and the above, we have established the following multivariate
generalized Prabhakar left fractional Hardy type inequality:

dx < oo, (133)
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Theorem 3.20. Here j = 1,....m. Let pj, u;,vj,w; > 0, and f;; € C([a,b]),

i=1,...n, with ¥ € C*([a,b]) which is increasing. The function Xi+ (y) eR
by assumption, ¥ y € [a,b], is given by (183). Here ®; : R} = Ry, j=1,..,m
are convex and increasing per coordinate functions. Then

_—
. (Frchs)
o T W) = @) EY L Wi (@ () = ¢ ()]

Jj=1

H/ ’fﬂ (/ab ) (‘?p(y)’) ot (¥) dy) : (134)
J#p

Based on (69) and Remark 3.3, we get for appropiate weight u > 0 that

dr <

(denote this particular A,, by X:i_) the integrable function:

m

> pui—m
j=1

(2 Ehi J [wi (0 ) = v ()]
5\ By g (6 (0) =% (@))”]

dx < o0, (135)

for all a <y < b.
By Theorem 2.3 and the above, we have established the following multivariate
generalized Prabhakar right fractional Hardy type inequality:

Theorem 3.21. Here j = 1,...,m; i=1,....n. Let p;, puj,vj,w; > 0, and fj; €
C ([a,b]), i = 1,...,n, with ¢ € C'([a,b]) which is increasing. The function

Xi_ (y ) € R by assumption, V y € [a,b], is given by (185). Here ®; : R — R,
j=1,...,m, are convex and increasing per coordinate functions. Then

(e ts) @)

[ e I o e 5, e e o @

Jj=

dr <

H/ dy (/ab ) (‘7; (y)’) Mo (4) dy) : (136)
J;ﬁp

We continue with multivariate left and right -Prabhakar-Caputo Hardy frac-
tional inequalities:
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Theorem 3.22. Here j =1,...,m; i =1,...,n. Let pj, pj,w; >0, 7; <0, and
fii € CNi([a,b)), N; = [u;], py & N; 0 := max (Ny, ..., Ny,), ¥ € C?([a,b]),

N;
¥ is increasing with ¥’ (z) # 0 over [a,b]. Set f[N 7! (x) = (w/%m%) fii (x),
x € [a,b]. We assume that the weight function u > 0 is such that

f:l(Nj—#g‘)—m

(¥ (=) =¥ ()=

b
N () = (& ()" / u ()

i( ] #j)
(@ (z) =2 (a)=
m E
11 < oy [w; (¥ (z) — ¥ ()" ) e o
Jj=1 ijVj—uj-&-l[ (¢ Z/J(G

for all a < y < b, which is integrable.
Here ®; : R} — Ry, j =1,...,m, are convex and increasing per coordinate
functions. Then

., ] (D2 et ) @)
[ eIl @@ - @B e ey (@) — $ (@)

Jj=1 P Nj—p;+1

i1 [fo (o) ) ([ (52

Proof. By (42) we have that

dr <

Ty )D N () dy> - (139)

) —s N
(3 s it) ) = (608, sy o) (), (139)
Va€lad],j=1,....m,i=1..n.
We apply Theorem 3.20. O

Theorem 3.23. Here j =1,...,m; i =1,...,n. Let pj, pj,w; >0, v; <0, and
fii € CNi([a,b]), N; = [u;], py ¢ N; 0 := max (Ny, ..., Ny,), ¥ € C?([a,b]),

N;
¥ is increasing with ¥’ () # 0 over [a,b]. Set f[N s (x) = (m d—‘i) fii (x),
x € [a,b]. We assume that the weight function u > 0 is such that

N )= 0 )" [ty |
W ®) —p @)=
m (BN wi (0 (y) — ¥ (2))”]
i dx < oo, 140
jl:[1<EpJTJJ uJ+1[ (1/’(17)_1/}(37))%]) - (140)

for all a < y < b, which is integrable.



Vectorial Hilfer-Prabhakar-Hardy type fractional inequalities 343

Here @; : R} — Ry, j = 1,...,m, are convex and increasing per coordinate
functions. Then

T
b i ‘ (CDZ;:M,wj,bfj> ()

B @) = @) E ey (6 (6) — & (2)”]

£ o () ([ o (0 32w
Jsép

Proof. By (43) we have that

dr <

35 Nj —i5
(O3 o fit) @) = (D™ (008 i) @), (142)
Vaelabd,j=1,....m,i=1, .., n.
We apply Theorem 3.21. U

Next we present multivariate left and right v-Hilfer-Prabhakar Hardy frac-
tional inequalities:

Theorem 3.24. Here j =1,....m, i =1,...,n. Let p;, uj,w; >0, v; <0, and
fii € CNi([a,b]), Nj = [p;], pj ¢ N; 0 := max (Ny,..., Ny), ¢ € C?([a,b]),
Y is increasing with ¥’ () # 0 over [a,b]. Here 0 < ; < 1 and & = p; +

Bj (N; — pj;). We assume that RLDZ;% fja+fﬂ € C([a,b]), j=1,...,m, i =
1,...,n. We assume further that the weight function u > 0 is such that
> (&5—nj)—m
b =
m (W (x) =¥ (y)~
"X (1) = @ )" [ ula)
Yy

3 (&5—15)
).7:1

B0y (0 (2) — 1 (a)™]

for all a < y < b, which is integrable.

Here ®; : R} — Ry, j =1,...,m, are convex and increasing per coordinate
functions. Then

m =73 B; W ) — Pi
H Ep]’gj Nws (@ () =9 (y)™] < o0, (143)

dr <

HpyYss ﬁy
Prnfio |

=l w(x)—wa))&f‘“jEpﬁgfum[ (@ (z) — ¢ (a))™]
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m b
I/ & (082 o)
j=17e

i#5

b s
1-085);
( / o5 ( D <y>D Pt ) dy> . (144)
Proof. By (51) we have that
HyYiB55% _ B RL 1yvi(1=85):%
( Dzz#;vwﬁa‘f‘fji) (z) = epj’jgjj_ﬂjawjaa"r DZ}&;',W;VG-&-fﬂ (), (145)

Veelabd,j=1,...mi=1,..n.
We apply Theorem 3.20. O

Theorem 3.25. Here j =1,...m,i=1,...,n. Let p;, ;,w; >0, v; <0, and
fii € CNi([a,b]), N; = [u;], pj ¢ N; 0 := max (Ny, ..., Ny), ¥ € C?([a,b]),
Y is increasing with ¢’ (x) # 0 over [a,b]. Here 0 < f; < 1 and & = p; +

(1—85); . .
Bj (N; — pj). We assume that RLDZ;f£j7&7)bffji € C(la,b]), j=1,....,m, i =
1,...,n. We assume further that the weight function u > 0 is such that

, ) — w &
"N )= 0 )" [ty |
a (w(b)_'(b )= JTHG
m RUL I — b ()
i (Bl —v@r) -

S \E Ty (0 (b) — 4 (2))”7]

for all a <y < b, which is integrable.
Here ®; : R} — Ry, j =1,...,m, are convex and increasing per coordinate
functions. Then

dr <

b m ’(HD’Yjﬁjﬂl) f) (:E)
[ w e, A |
o im |\ @O v @) E, T L wy (8(6) = v ()]

m b

3 (1=5;5);
H/ 2; ('RLDijéj»w_j,)b¢fj (y) |) dy
j=17a

i#p

([

—_—
7(1-55);
o w)|) T w) dy> . (147)
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Proof. By (52) we have that

Hiy i85 _ B RL 1yv; (1=8;)3%
< Dpjyﬂé,wj»b*fji) (x) = ep.w{éjiujij’b* DP;-,Ejvw;b*fji (), (148)

Vaeelad,j=1...mi=1,..,n.

8.

9.

We apply Theorem 3.21. O
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