References
- G.E. Andrews, R. Askey, R. Roy, Special Functions, Vol. 71, Combridge Press, Cambridge, UK, 1999.
- N.S. Jung, C.S. Ryoo, Identities involving q-analogue of modified tangent polynomials, J. App. Math. & Informatics 39 (2021), 643-654.
- M. Kaneko, Poly-Bernoulli numbers, J. Th'eor. Nombres Bordeaux 9 (1997), 199-206.
- T. Komatsu, J.L. Ram'irez, V.F. Sirvent, A (p, q)-Analog of Poly-Euler Polynomials and Some Related Polynomials, Ukrainian Mathematical Journal 72 (2020), 536-554. https://doi.org/10.1007/s11253-020-01799-6
- T. Mansour, Identities for sums of a q-analogue of polylogarithm functions, Lett. Math. Phys. 87 (2009), 1-18. https://doi.org/10.1007/s11005-008-0290-3
- C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies. Theor. Phys. 7 (2013), 447-454. https://doi.org/10.12988/astp.2013.13042
- C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. & Informatics 32 (2014), 315-322. https://doi.org/10.14317/jami.2014.315
- C.S. Ryoo, On (p, q)-Cauchy polynomials and their zeros, Global Journal of Pure and Applied Mathematics 12 (2016), 4623-4636.
- C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros, Advances in Difference Equations 2017:213 (2017), 1-14. https://doi.org/10.1186/s13662-017-1275-2
- P.N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934[math.QA].
- H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31(6) (2010), 1689-1705. https://doi.org/10.1016/j.ejc.2010.04.003