DOI QR코드

DOI QR Code

NUMERICAL COMPUTATION OF THE ZEROS OF THE FULLY MODIFIED q-POLY-TANGENT POLYNOMIALS OF THE FIRST TYPE

  • Received : 2023.03.15
  • Accepted : 2023.11.09
  • Published : 2023.11.30

Abstract

In this paper, we investigate the zeros of the fully modified q-poly-tangent polynomials of the first type.

Keywords

References

  1. G.E. Andrews, R. Askey, R. Roy, Special Functions, Vol. 71, Combridge Press, Cambridge, UK, 1999. 
  2. N.S. Jung, C.S. Ryoo, Identities involving q-analogue of modified tangent polynomials, J. App. Math. & Informatics 39 (2021), 643-654. 
  3. M. Kaneko, Poly-Bernoulli numbers, J. Th'eor. Nombres Bordeaux 9 (1997), 199-206. 
  4. T. Komatsu, J.L. Ram'irez, V.F. Sirvent, A (p, q)-Analog of Poly-Euler Polynomials and Some Related Polynomials, Ukrainian Mathematical Journal 72 (2020), 536-554.  https://doi.org/10.1007/s11253-020-01799-6
  5. T. Mansour, Identities for sums of a q-analogue of polylogarithm functions, Lett. Math. Phys. 87 (2009), 1-18.  https://doi.org/10.1007/s11005-008-0290-3
  6. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies. Theor. Phys. 7 (2013), 447-454.  https://doi.org/10.12988/astp.2013.13042
  7. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. & Informatics 32 (2014), 315-322.  https://doi.org/10.14317/jami.2014.315
  8. C.S. Ryoo, On (p, q)-Cauchy polynomials and their zeros, Global Journal of Pure and Applied Mathematics 12 (2016), 4623-4636. 
  9. C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros, Advances in Difference Equations 2017:213 (2017), 1-14.  https://doi.org/10.1186/s13662-017-1275-2
  10. P.N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934[math.QA]. 
  11. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31(6) (2010), 1689-1705. https://doi.org/10.1016/j.ejc.2010.04.003