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INTERVAL VALUED VECTOR VARIATIONAL INEQUALITIES

AND VECTOR OPTIMIZATION PROBLEMS VIA

CONVEXIFICATORS
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Abstract. In this study, we take into account interval-valued vector opti-

mization problems (IV OP ) and obtain their relationships to interval vector

variational inequalities (IV V I) of Stampacchia and Minty kind in aspects
of convexificators, as well as the (IV OP ) LU-efficient solution under the

LU-convexity assumption. Additionally, we examine the weak version of

the (IV V I) of the Stampacchia and Minty kind and determine the relation-
ships between them and the weakly LU-efficient solution of the (IV OP ).

The results of this study improve and generalizes certain earlier results

from the literature.
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1. Introduction

Giannessi [6] first proposed the idea of vector variational inequalities (V V I)
in 1980, which have been broader applicability in optimization, adaptive con-
trol, finance, and stability problems, see, for example, [4, 13] and the references
cited therein. In optimization theory, nonsmooth phenomenon frequently occur,
which has prompted the development of several subdifferential and generalized
directional derivative notions. A generalization of plenty of well subdifferentials,
particularly Mordukhovich [23], Michel-Penot [20], and Clarke [3] subdifferen-
tials is the idea of a convexificator. It has been demonstrated that the idea of
convexificators is a helpful tool in the field of nonsmooth optimization. The
concept of a convexificator was proposed by Demyanov [5] in the year 1994.
Convexificators were recently employed by Golestani and Nobakhtian [7], Long
and Huang [17] and Luu [19] to create the ideal circumstances for nonsmooth
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optimization problems. We refer to [12, 15, 16, 18, 27], and its sources for further
details on convexificators.

One of the deterministic optimization models that can be used to deal with
uncertain data is a problem known as an interval-valued optimization problem.
There are three basic ways to describe constrained optimization with uncer-
tainty, which are referred to as the stochastic programming approach, the fuzzy
programming approach, and the interval-valued programming approach. To find
solutions to these problems, numerous techniques have been established. Sto-
chastic and fuzzy optimization problems, on the other hand, are notoriously
difficult to resolve. In the method of optimization known as the interval-valued
optimization problem, the coefficients of both the objective and constraint func-
tions are represented by closed intervals. As a result, the solution to the sto-
chastic or fuzzy optimization problem will be more difficult to achieve than
the solution to the (IV OP ). This is the primary reason why the (IV OP ) has
recently attracted increased interest in the optimization community, see for ex-
ample [8, 10, 24, 25, 26, 28] and the references contained therein for more in-
formation. For both smooth and nonsmooth vector-valued objective functions,
numerous results proving optimality criteria in terms of (V V I) have been de-
veloped, see [2]. Concerning optimal solutions with interval values, Zhang et al.
[29] studied LU-convexity as an extension of convexity to determine the opti-
mality criteria for real-valued maps. Jenname [9] examine the case of (IV OP )
and demonstrate how they relate to interval (V V I) of Stampacchia and Minty
kind. Motivated and inspired by ongoing research work, we adapt the concept of
the LU-convex function and generalize it to an interval-valued vector function.
Afterward, we will use these concepts as a tool to find the relationship between
(IV OP ) and (V V I) of Stampacchia and Minty types.

The work done in this paper is divided into five sections. Sections 1 and 2 deal
with the introduction and preliminaries required for a basic understanding of the
topic. Section 3 deals with the basics of intervals and their features. Section
4 deduces relationships between (IV OP ), (IV V I) of Stampacchia and Minty
kind in terms of convexificators and LU-efficient solution of (IV OP ) under the
LU-convexity condition. Finally, in section 5 we conclude our paper.

2. Main results

In this paper, we take Rn as n-dimensional Euclidean space, Rn
+ and intRn

+

as its nonnegative and positive orthant, respectively. R = R ∪ {∞} signify the
extended real line and ⟨., .⟩ denotes the Euclidean inner product. Further, we
assume that 0 ̸= D ⊆ Rn contains the Euclidean norm ∥.∥.

The convention for equality and inequalities is as follows:
If υ, ω ∈ Rn, then
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υ ≧ ω ⇔ υj ≥ ωj , j = 1, 2, 3, ..., n;
υ > ω ⇔ υj > ωj , j = 1, 2, 3, ..., n;
υ ≥ ω ⇔ υj ≥ ωj , j = 1, 2, 3, ..., n, but υ ̸= ω;
υ ≦ ω ⇔ υj ≤ ωj , j = 1, 2, 3, ..., n;
υ < ω ⇔ υj < ωj , j = 1, 2, 3, ..., n;
υ ≤ ω ⇔ υj ≤ ωj , j = 1, 2, 3, ..., n, but υ ̸= ω.
First of all, we recall some definitions from [11] as follows:

Definition 2.1. Suppose Γ : D → R be an extended real valued function, υ ∈ D
and Γ(υ) be finite. Then, the lower and upper Dini derivatives of Γ at υ ∈ D in
the direction ω ∈ Rn, are denoted and defined as follows:

Γ−(υ, ω) = lim inf
λ→0

Γ(υ + λω)− Γ(υ)

λ
.

Γ+(υ, ω) = lim sup
λ→0

Γ(υ + λω)− Γ(υ)

λ
.

Definition 2.2. Suppose Γ : D → R be an extended real valued function, υ ∈ D
and Γ(υ) be finite. Then Γ is called:

(i) an upper convexificator ∂∗Γ(υ) ⊆ Rn at υ ∈ D, if and only if ∂∗Γ(υ) is
closed and for every ω ∈ Rn, we have

Γ−(υ, ω) ≤ sup
ζ∈∂∗Γ(υ)

⟨ζ, ω⟩ ,

(ii) a lower convexificator ∂∗Γ(υ) ⊆ Rn at υ ∈ D, if and only if ∂∗Γ(υ) is
closed and for every ω ∈ Rn, we have

Γ+(υ, ω) ≥ inf
ζ∈∂∗Γ(υ)

⟨ζ, ω⟩ ,

(iii) a convexificator ∂∗
∗Γ(υ) ⊆ Rn at υ ∈ D, if and only if ∂∗

∗Γ(υ) is both
upper and lower convexificator of Γ at υ.
That is, for every ω ∈ Rn, we have

Γ−(υ, ω) ≤ sup
ζ∈∂∗

∗Γ(υ)

⟨ζ, ω⟩ , Γ+(υ, ω) ≥ inf
ζ∈∂∗

∗Γ(υ)
⟨ζ, ω⟩ .

Theorem 2.3. [11] Suppose a, b ∈ D and Γ : D → R be finite and continuous
on (a, b). Suppose ∂∗

∗Γ(ω) is a bounded convexificator for all ω ∈ [a, b]. Then
exists c ∈ (a, b) such that

Γ(b)− Γ(a) = ⟨ζ, b− a⟩ , for ζ ∈ co∂∗
∗Γ(c).

The notion of convexity for locally Lipschitz vector-valued functions using
convexificators is defined as follows:

Definition 2.4. [14] Suppose Γ = (Γ1,Γ2, ...,Γp) : D → Rp be a vector-valued
function such that Γk : D → R is locally Lipschitz at ω ∈ D and admits a
bounded convexificator ∂∗

∗Γ(ω) at ω for all k ∈ ℓ = {1, 2, ..., p}. Then Γ is called
:
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(i) ∂∗
∗ -convex at ω ∈ D if

Γ(υ)− Γ(ω) ≧ ⟨ζ, υ − ω⟩p , ∀ υ ∈ D, ζ ∈ ∂∗
∗Γ(ω),

(ii) strictly ∂∗
∗ -convex at ω ∈ D if

Γ(υ)− Γ(ω) > ⟨ζ, υ − ω⟩p , ∀ υ ∈ D, ζ ∈ ∂∗
∗Γ(ω).

Theorem 2.5. [14] Suppose Γ = (Γ1,Γ2, ...,Γp) : D → Rp be a vector-valued
function such that Γk : D → ℜ are locally Lipschitz functions on D and admit
bounded convexificators ∂∗

∗Γk(υ), for any υ ∈ D, ∀ k ∈ ℓ. Then Γ is ∂∗
∗-convex

(strictly) on D if and only if ∂∗
∗Γ is monotone (strictly) on D.

3. Interval-valued vector functions

First, we review several fundamental operations that can be performed at real
intervals. For further information on interval analysis, we refer to [21, 22]. Let’s
denote the set of all closed intervals in R by ℜ. Suppose P = [pL, pU ], Q =
[qL, qU ] ∈ ℜ, then the sum and the product are defined by

P+Q = {p+ q : p ∈ P, q ∈ Q} = [pL + qL, pU + qU ],

P×Q = {pq : p ∈ P, q ∈ Q} = [min Z,max Z],

where Z = {pUqU , pUqL, pLqU , pLqL}. It is important to note that any real
number p can be interpreted as the closed interval Pp = [p, p], which means that
the sum of p+Q is Pp +Q.
Based on the previous procedures, we can describe the product by multiplying
an interval by a real number α as

αP = {αp : p ∈ P} =

{
[αpL, αpU ], if α ≥ 0,[
αpU , αpL

]
, if α < 0.

Note that −P = {−p : p ∈ P} = [−pU ,−pL]. Thus the difference between the
two sets will be defined as

P−Q = P+ (−Q) = [pL − qU , pU − qL].

For intervals, an order relation is defined as

(1) P ⪯LU Q ⇐⇒ pL ≤ qL and pU ≤ qU ,
(2) P ≺LU Q ⇐⇒ P ⪯LU Q and P ̸= Q, that is one of following holds:

(a) pU < qU and pL < qL, or
(b) pU < qU and pL ≤ qL, or
(c) pU ≤ qU and pL < qL.

Remark 3.1. Suppose P = [pL, pU ], Q = [qL, qU ] ∈ ℜ, then P and Q are
comparable if P ⪯LU Q or P ⪰LU Q.
If any of the following is true, then P and Q cannot be compared to one another:

pU > qU and pL < qL; pU ≥ qU and pL < qL; pU > qU and pL ≤ qL;

pU < qU and pL > qL; pU ≤ qU and pL > qL; pU < qU and pL ≥ qL;
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Suppose P = (P1,P2, ...,Pn) be an interval-valued vector, where every com-
ponent Pk = [cLk , c

U
k ], k = 1, 2, ..., n is a closed interval. We take into con-

sideration two interval-valued vectors denoted by P = (P1,P2, ...,Pn) and
Q = (Q1,Q2, ...,Qn) in such a way that Pk and Qk are comparable for ev-
ery k values ranging from 1 to n, then

(a) P ⪯LU Q if Pk ⪯LU Qk for every k = 1, 2, ..., n,
(b) P ≺LU Q if Pk ⪯LU Qk for every k = 1, 2, ..., n, and Pi ≺LU Qi for at

least one i.

A function Γ : D → ℜ is called an interval-valued function if Γ(ω) = [ΓL(ω),
ΓU (ω)], where ΓL and ΓU are real-valued functions defined on D satisfying
ΓL(ω) ≤ ΓU (ω), for every ω ∈ D. If Γ1,Γ2, ...,Γp : D → ℜ are p interval-
valued functions, then we refer to the function Γ = (Γ1,Γ2, ...,Γp) : D → ℜp an
interval-valued vector function.

Definition 3.1. [29] Suppose Γ = [ΓL,ΓU ] : D → ℜ be an interval-valued
function, then Γ is called locally Lipschitz at ω0 ∈ D w.r.t. the Hausdorff metric
if there exists M > 0 and δ > 0 such that

dH(Γ(ω),Γ(υ)) ≤ M∥ω − υ∥,
where dH(Γ(ω),Γ(υ)) is the Hausdorff metric between Γ(ω) and Γ(υ), defined
by

dH(Γ(ω),Γ(υ)) = max{|Γ(ω)L − Γ(υ)L|, |Γ(ω)U − Γ(υ)U |}.

If every ω0 ∈ D is Lipschitz, then f is locally Lipschitz on D.

Proposition 3.2. [29] Suppose Γ = [ΓL,ΓU ] : D → ℜ be a locally Lipschitz on
D, then ΓL and ΓU both are locally Lipschitz on D.

Definition 3.3. A function Γ : D → ℜ is called ∂∗
∗ -LU-convex on D if the real

valued functions ΓL and ΓU are ∂∗
∗ -convex on D.

Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued vector function.
Every component function Γk = [ΓL

k ,Γ
U
k ], k ∈ ℓ = {1, 2, ..., p} is a locally Lip-

schitz interval-valued function defined on D. The nonsmooth interval-valued
vector optimization problem (in short, (IV OP )) is defined as:

Min {Γ(ω) = (Γ1(ω),Γ2(ω), ...,Γp(ω))} such that ω ∈ D.

Definition 3.4. [29] A vector υ ∈ D is

(i) an LU-efficient solution of the (IV OP ) if ∃ no ω ∈ D such that Γ(ω) ≺LU

Γ(υ)
or equivalently

Γk(ω) ⪯LU Γk(υ), ∀ k ∈ ℓ, k ̸= j.

Γj(ω) ≺LU Γj(υ), for some j ∈ ℓ.

(ii) a weakly LU-efficient solution of the (IV OP ) if ∃ no ω ∈ D such that

Γk(ω) ≺LU Γk(υ), ∀ k ∈ ℓ.
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4. Interval Valued Minty and Stampacchia Vector Variational
Inequalities in terms of convexificators

An interval-valued (V V I) problem of Minty type in terms of convexificators
(for short, (IMV V IP )) for a nonsmooth case, is to find ω ∈ D such that the
following inequality cannot hold{ 〈

ζL, υ − ω
〉
p
=

(〈
ζL1 , υ − ω

〉
,
〈
ζL2 , υ − ω

〉
, ...,

〈
ζLp , υ − ω

〉)
≦ 0,〈

ζU , υ − ω
〉
p
=

(〈
ζU1 , υ − ω

〉
,
〈
ζU2 , υ − ω

〉
, ...,

〈
ζUp , υ − ω

〉)
≦ 0,

for all υ ∈ D and all ζLk ∈ ∂∗
∗Γk(υ), ζUk ∈ ∂∗

∗Γk(υ), k ∈ ℓ.

An interval-valued (V V I) problem of Stampacchia type in terms of convexi-
ficators (for short, (ISV V IP )) for a nonsmooth case, is to find ω ∈ D such that
the following inequality cannot hold{ 〈

ξL, υ − ω
〉
p
=

(〈
ξL1 , υ − ω

〉
,
〈
ξL2 , υ − ω

〉
, ...,

〈
ξLp , υ − ω

〉)
≦ 0,〈

ξU , υ − ω
〉
p
=

(〈
ξU1 , υ − ω

〉
,
〈
ξU2 , υ − ω

〉
, ...,

〈
ξUp , υ − ω

〉)
≦ 0,

for all υ ∈ D and all ξLk ∈ ∂∗
∗Γk(ω), ξUk ∈ ∂∗

∗Γk(ω), k ∈ ℓ.

We propose essential conditions, which are both necessary and sufficient for
an effective solution to the (IV OP ).

Theorem 4.1. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions on D and
admit bounded convexificators ∂∗

∗Γk(υ) for any υ ∈ D, ∀ k ∈ ℓ. Also, suppose
that Γ is ∂∗

∗-LU-convex on D. Then ω ∈ D is an LU-efficient solution of (IV OP )
if and only if ω is a solution of (IMV V IP ).

Proof. Suppose that ω is not a solution of (IMV V IP ), then there exists υ ∈ D,
ζLk ∈ ∂∗

∗Γk(υ), ζUk ∈ ∂∗
∗Γk(υ), k ∈ ℓ such that

{ 〈
ζL, υ − ω

〉
p
=

(〈
ζL1 , υ − ω

〉
,
〈
ζL2 , υ − ω

〉
, ...,

〈
ζLp , υ − ω

〉)
≦ 0,〈

ζU , υ − ω
〉
p
=

(〈
ζU1 , υ − ω

〉
,
〈
ζU2 , υ − ω

〉
, ...,

〈
ζUp , υ − ω

〉)
≦ 0.

(1)

Since each Γk is ∂∗
∗ -LU-convex. Therefore ΓL

k and ΓU
k are ∂∗

∗ -convex, so we
have {

ΓL
k (υ)− ΓL

k (ω) ≧
〈
ζLk , υ − ω

〉
p
,

ΓU
k (υ)− ΓU

k (ω) ≧
〈
ζUk , υ − ω

〉
p
,

(2)

for all ω ∈ D and k ∈ ℓ. From (1) and (2), there exists υ such that

Γ(υ) ≺LU Γ(ω),

which is a contradiction.
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Conversely, suppose that ω ∈ D is a solution of (IMV V IP ) but not an
LU-efficient solution of (IV OP ). Then there exists υ ∈ D such that

Γ(υ) ≺LU Γ(ω). (3)

Using convexity of D, take µ(t) = ω + t(υ − ω) ∈ D for any t ∈ [0, 1]. As Γ is
∂∗
∗ -LU-convex on D, by Proposition 2.5, ∀ t ∈ [0, 1], we have{

ΓL(ω + t(υ − ω))− ΓL(ω) ≦ t[ΓL(υ)− ΓL(ω)],
ΓU (ω + t(υ − ω))− ΓU (ω) ≦ t[ΓU (υ)− ΓU (ω)],

or equivalently, for every k ∈ ℓ and t ∈ [0, 1], we have{
ΓL
k (ω + t(υ − ω))− ΓL

k (ω) ≤ t[ΓL
k (υ)− ΓL

k (ω)],
ΓU
k (ω + t(υ − ω))− ΓU

k (ω) ≤ t[ΓU
k (υ)− ΓU

k (ω)].

By Mean value Theorem 2.3 on convexificators, for any k ∈ ℓ, there exists

t̄k ∈ (0, t) and ζ̄Lk ∈ co∂∗
∗Γk(µ(t̄k)), ζ̄Uk ∈ co∂∗

∗Γk(µ(t̄k)) such that
〈
ζ̄Lk , t(υ − ω)

〉
= ΓL

k (ω + t(υ − ω))− ΓL
k (ω),〈

ζ̄Uk , t(υ − ω)
〉
= ΓU

k (ω + t(υ − ω))− ΓU
k (ω),

which implies that for any k ∈ ℓ and for some ζ̄Lk ∈ co∂∗
∗Γk(µ(t̄k)), ζ̄Uk ∈

co∂∗
∗Γk(µ(t̄k)), we have

〈
ζ̄Lk , υ − ω

〉
≤ ΓL

k (υ)− ΓL
k (ω),〈

ζ̄Uk , υ − ω
〉
≤ ΓU

k (υ)− ΓU
k (ω).

(4)

Suppose t̄1 = t̄2 = ... = t̄p = t̄. Multiplying both side of (4) by t̄, for k ∈ ℓ

and ζ̄Lk ∈ co∂∗
∗Γk(µ(t̄)), ζ̄Uk ∈ co∂∗

∗Γk(µ(t̄)), we have
〈
ζ̄Lk , µ(t̄)− ω

〉
≤ t̄(ΓL

k (υ)− ΓL
k (ω)),〈

ζ̄Uk , µ(t̄)− ω
〉
≤ t̄(ΓU

k (υ)− ΓU
k (ω)).

(5)

Combining (3) and (5), we see that υ is not a solution of (IMV V IP ), which
is a contradiction.
Consider the case when t̄1, t̄2, ..., t̄p are not all equal. Suppose t̄1 ̸= t̄2. Then
from (4), we have 

〈
ζ̄L1 , υ − ω

〉
≤ ΓL

1 (υ)− ΓL
1 (ω),〈

ζ̄U1 , υ − ω
〉
≤ ΓU

1 (υ)− ΓU
1 (ω),

for some ζ̄L1 ∈ co∂∗
∗Γ1(µ(t̄1)), ζ̄U1 ∈ co∂∗

∗Γ1(µ(t̄1)) and
〈
ζ̄L2 , υ − ω

〉
≤ ΓL

2 (υ)− ΓL
2 (ω),〈

ζ̄U2 , υ − ω
〉
≤ ΓU

2 (υ)− ΓU
2 (ω),
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for some ζ̄L2 ∈ co∂∗
∗Γ2(µ(t̄2)), ζ̄U2 ∈ co∂∗

∗Γ2(µ(t̄2)).
Since Γ1 and Γ2 are ∂∗

∗ -LU-convex. Therefore ΓL
1 and ΓU

2 are ∂∗
∗ -convex, so by

Theorem 2.5, we have
〈
ζ̄L1 − ¯ζL12, µ(t̄1)− µ(t̄2)

〉
≥ 0, ∀ ¯ζL12 ∈ co∂∗

∗Γ1(µ(t̄2)),〈
ζ̄U1 − ¯ζU12, µ(t̄1)− µ(t̄2)

〉
≥ 0, ∀ ¯ζU12 ∈ co∂∗

∗Γ1(µ(t̄2)),

and 
〈
ζ̄L2 − ¯ζL21, µ(t̄2)− µ(t̄1)

〉
≥ 0, ∀ ¯ζL21 ∈ co∂∗

∗Γ2(µ(t̄1)),〈
ζ̄U2 − ¯ζU21, µ(t̄2)− µ(t̄1)

〉
≥ 0, ∀ ¯ζU21 ∈ co∂∗

∗Γ2(µ(t̄1)).

If t̄1 − t̄2 > 0, then
〈

¯ζL12, υ − ω
〉
≤ ΓL

1 (υ)− ΓL
1 (ω),〈

¯ζU12, υ − ω
〉
≤ ΓU

1 (υ)− ΓU
1 (ω).

If t̄2 − t̄1 > 0, then
〈

¯ζL21, υ − ω
〉
≤ ΓL

2 (υ)− ΓL
2 (ω),〈

¯ζU21, υ − ω
〉
≤ ΓU

2 (υ)− ΓU
2 (ω).

For t̄1 ̸= t̄2, set t̄ = min{t̄1, t̄2}, there exists ζ̄Lk ∈ co∂∗
∗Γ

L
k (µ(t̄)), ζ̄Lk ∈

co∂∗
∗Γ

U
k (µ(t̄)), for any k = 1, 2 such that

〈
ζ̄Lk , υ − ω

〉
≤ ΓL

k (υ)− ΓL
k (ω),〈

ζ̄Uk , υ − ω
〉
≤ ΓU

k (υ)− ΓU
k (ω).

Continuing this process, we can find t̂ ∈ (0, t) such that t̂ = min{t̄1, t̄2, ..., t̄p}
and ζ̂Lk ∈ co∂∗

∗Γ
L
k (µ(t̂)), ζ̂

U
k ∈ co∂∗

∗Γ
U
k (µ(t̂)), ∀ k ∈ ℓ such that


〈
ζ̂Lk , υ − ω

〉
≤ ΓL

k (υ)− ΓL
k (ω),〈

ζ̂Uk , υ − ω
〉
≤ ΓU

k (υ)− ΓU
k (ω).

Multiplying the above inequalities by t̂, we have


〈
ζ̂Lk , µ(t̂)− ω

〉
≤ t̂(ΓL

k (υ)− ΓL
k (ω)),〈

ζ̂Uk , µ(t̂)− ω
〉
≤ t̂(ΓU

k (υ)− ΓU
k (ω)).
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From (3), for some µ(t̂) ∈ D, we have
〈
ζ̂L, µ(t̂)− ω

〉
p
≦ 0,〈

ζ̂U , µ(t̂)− ω
〉
p
≦ 0,

which is a contradiction. □

Theorem 4.2. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions on D and
admit bounded convexificators ∂∗

∗Γk(υ) for any υ ∈ D, ∀ k ∈ ℓ. Also, suppose
that Γ is ∂∗

∗-LU-convex on D. If ω ∈ D is a solution of (ISV V IP ), then ω is
an LU-efficient solution of (IV OP ) .

Proof. Suppose ω ∈ D is a solution of (ISV V IP ) but not an LU-efficient solu-
tion of (IV OP ). Then there exists υ ∈ D such that

Γ(υ) ≺LU Γ(ω). (6)

Since Γ is ∂∗
∗ -LU-convex. Therefore ΓL and ΓU are ∂∗

∗ -convex, for any ξL ∈
∂∗
∗Γ(ω) and ξU ∈ ∂∗

∗Γ(ω), there exists ω ∈ D such that{ 〈
ξL, υ − ω

〉
p
≦ 0,〈

ξU , υ − ω
〉
p
≦ 0,

which is a contradiction to the fact ω ∈ D is a solution of (ISV V IP ). □

Theorem 4.3. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions on D and
admit bounded convexificators ∂∗

∗Γk(υ) for any υ ∈ D, ∀ k ∈ ℓ. Also, suppose
that Γ is ∂∗

∗-LU-convex on D. If ω ∈ D is a solution of (ISV V IP ), then ω is a
solution of (IMV V IP ).

Proof. Suppose ω ∈ D is a solution of (ISV V IP ), then for any υ ∈ D, ξL ∈
∂∗
∗Γ(ω), ξU ∈ ∂∗

∗Γ(ω) the following cannot hold{ 〈
ξL, υ − ω

〉
p
≦ 0,〈

ξU , υ − ω
〉
p
≦ 0.

Since Γ is ∂∗
∗ -LU-convex. Therefore ΓL and ΓU are ∂∗

∗ -convex, so by Theorem
2.5, ∂∗

∗Γ
L and ∂∗

∗Γ
U are monotone over D, which implies that, for any υ ∈ D

and ζL ∈ ∂∗
∗Γ(υ), ζU ∈ ∂∗

∗Γ(υ) the following cannot hold

{ 〈
ζL, υ − ω

〉
p
≦ 0,〈

ζU , υ − ω
〉
p
≦ 0.

Hence ω ∈ D is a solution of (IMV V IP ). □
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4.1. Interval Valued Weak Vector Variational Inequalities in terms of
convexificators.

An interval-valued weak (V V I) problem of Minty type in terms of convexi-
ficators (for short, (IWMV V IP )) for a nonsmooth case, is to find ω ∈ D such
that the following inequality cannot hold{ 〈

ζL, υ − ω
〉
p
=

(〈
ζL1 , υ − ω

〉
,
〈
ζL2 , υ − ω

〉
, ...,

〈
ζLp , υ − ω

〉)
< 0,〈

ζU , υ − ω
〉
p
=

(〈
ζU1 , υ − ω

〉
,
〈
ζU2 , υ − ω

〉
, ...,

〈
ζUp , υ − ω

〉)
< 0,

for all υ ∈ D and all ζLk ∈ ∂∗
∗Γk(υ), ζUk ∈ ∂∗

∗Γk(υ), k ∈ ℓ.

An interval-valued weak (V V I) problem of Stampacchia type in terms of
convexificators (for short, (IWSV V IP )) for a nonsmooth case, is to find ω ∈ D
such that the following inequality cannot hold{ 〈

ξL, υ − ω
〉
p
=

(〈
ξL1 , υ − ω

〉
,
〈
ξL2 , υ − ω

〉
, ...,

〈
ξLp , υ − ω

〉)
< 0,〈

ξU , υ − ω
〉
p
=

(〈
ξU1 , υ − ω

〉
,
〈
ξU2 , υ − ω

〉
, ...,

〈
ξUp , υ − ω

〉)
< 0,

for all υ ∈ D and all ξLk ∈ ∂∗
∗Γk(ω), ξUk ∈ ∂∗

∗Γk(ω), k ∈ ℓ.

Theorem 4.4. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions on D and
admit bounded convexificators ∂∗

∗Γk(υ) for any υ ∈ D, ∀ k ∈ ℓ. Also, suppose
that Γ is ∂∗

∗-LU-convex on D. Then ω ∈ D is a weakly LU-efficient solution of
(IV OP ) if and only if ω is a solution of (IWSV V IP ).

Proof. Suppose that ω is a weakly LU-efficient solution of (IV OP ). Then ∃ no
υ ∈ D such that

Γk(υ) ≺LU Γk(ω), ∀ k ∈ ℓ.

Thus ∃ no υ ∈ D such that{
(ΓL

1 (υ)− ΓL
1 (ω),Γ

L
2 (υ)− ΓL

2 (ω), ...,Γ
L
p (υ)− ΓL

p (ω)) < 0,
(ΓU

1 (υ)− ΓU
1 (ω),Γ

U
2 (υ)− ΓU

2 (ω), ...,Γ
U
p (υ)− ΓU

p (ω)) < 0.

Using convexity of D, ω+ t(υ− ω) ∈ D, for any t ∈ [0, 1], which implies that

Γ(ω + t(υ − ω))

t
< 0, for t ∈ [0, 1].

Taking limit inf as t → 0, we have{
(ΓL−

1 (ω, υ − ω),ΓL−
2 (ω, υ − ω), ...,ΓL−

p (ω, υ − ω)) < 0,

(ΓU−
1 (ω, υ − ω),ΓU−

2 (ω, υ − ω), ...,ΓU−
p (ω, υ − ω)) < 0.

Since Γk admit bounded convexificators ∂∗
∗Γk(υ), for any k ∈ ℓ, there exists no

υ ∈ D such that { 〈
ξL, υ − ω

〉
p
< 0, for all ξLk ∈ ∂∗

∗Γk(ω),〈
ξU , υ − ω

〉
p
< 0, for all ξUk ∈ ∂∗

∗Γk(ω).
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Hence υ is a solution of (IWSV V IP ).
Conversely, suppose that υ is a solution of (IWSV V IP ) but not a weakly LU-
efficient solution of (IV OP ). Then there exists ω ∈ D such that{

(ΓL
1 (υ)− ΓL

1 (ω),Γ
L
2 (υ)− ΓL

2 (ω), ...,Γ
L
p (υ)− ΓL

p (ω)) < 0,
(ΓU

1 (υ)− ΓU
1 (ω),Γ

U
2 (υ)− ΓU

2 (ω), ...,Γ
U
p (υ)− ΓU

p (ω)) < 0.

Using ∂∗
∗ -LU-convex of Γ at υ, there exists ω ∈ D such that{ 〈

ξL, υ − ω
〉
p
< 0, for all ξLk ∈ ∂∗

∗Γk(ω),〈
ξU , υ − ω

〉
p
< 0, for all ξUk ∈ ∂∗

∗Γk(ω),

which is a contradiction. □

Theorem 4.5. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions on D and
admit bounded convexificators ∂∗

∗Γk(υ) for any υ ∈ D, ∀ k ∈ ℓ. Also, suppose
that Γ is ∂∗

∗-LU-convex on D. Then ω ∈ D is a solution of (IWMV V IP ) if
and only if ω is a solution of (IWSV V IP ).

Proof. Suppose that ω is a solution of (IWMV V IP ). Consider any sequence
{tl} with tl ∈ (0, 1] such that tl → 0 as l → ∞. As D is convex, we have
ωl := ω + tl(υ − ω) ∈ D, for all υ ∈ D. Since ω is a solution of (IWMV V IP ),
for ξLp ∈ ∂∗

∗Γp(ωl), ξ
U
p ∈ ∂∗

∗Γp(ωl) there exists no υ ∈ D such that{ 〈
ξLp , ωl − υ

〉
p
< 0,〈

ξUp , ωl − υ
〉
p
< 0.

Since each Γi is locally Lipschitz and admits bounded convexificators on D, there
exists k > 0 such that ∥ξli∥ ≤ k, which means that the sequence ξli converges
to ξi for all i ∈ ℓ. Also the convexificators ∂∗

∗Γi(υ) are closed for all i ∈ ℓ and
υ ∈ D, it follows that ωl → ω and ξli → ξ̄i as l → ∞ with ξ̄i ∈ ∂∗

∗Γi(ω) for all
i ∈ ℓ. Thus for ξL ∈ ∂∗

∗Γ(ω) and ξU ∈ ∂∗
∗Γ(ω) there exists no υ ∈ D such that{ 〈

ξL, υ − ω
〉
p
< 0,〈

ξU , υ − ω
〉
p
< 0.

Hence ω is a solution of (IWSV V IP ).
Conversely, suppose that ω is a solution of (IWSV V IP ). Then, for any υ ∈ D
and ξL ∈ ∂∗

∗Γ(ω), ξ
U ∈ ∂∗

∗Γ(ω) the following cannot hold{ 〈
ξL, υ − ω

〉
p
< 0,〈

ξU , υ − ω
〉
p
< 0.

Since Γ is ∂∗
∗ -LU-convex on D. Therefore ΓL and ΓU are ∂∗

∗ -convex, so by
Theorem 2.5 ∂∗

∗Γ
L and ∂∗

∗Γ
U are monotone over D, which implies that for any
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υ ∈ D and ξL ∈ ∂∗
∗Γ(υ), ξ

U ∈ ∂∗
∗Γ(υ) the following cannot hold{ 〈
ξL, υ − ω

〉
p
< 0,〈

ξU , υ − ω
〉
p
< 0.

Hence ω is a solution of (IWMV V IP ). □

Theorem 4.6. Suppose Γ = (Γ1,Γ2, ...,Γp) : D → ℜp be an interval-valued
vector function such that Γk : D → ℜ are locally Lipschitz functions at υ ∈ D
and admit bounded convexificators ∂∗

∗Γ(υ), ∀ k ∈ ℓ. Also, suppose that Γ is
strictly ∂∗

∗-LU-convex on D. Then ω ∈ D is an LU-efficient solution of (IV OP )
if and only if ω is a weakly LU-efficient solution of (IV OP ).

Proof. Every LU-efficient solution is a weakly LU-efficient solution of (IV OP ).
Conversely, suppose that ω is a weakly LU-efficient solution of (IV OP ), but not
an LU-efficient solution of (IV OP ). Then there exists υ ∈ D such that

Γ(υ) ≺LU Γ(ω).

Since Γ is strictly ∂∗
∗ -LU-convex on D. Therefore ΓL and ΓU are ∂∗

∗ strictly
convex, so for any ξL ∈ ∂∗

∗Γ(υ) and ξU ∈ ∂∗
∗Γ(υ), there exists ω ∈ D{ 〈

ξL, υ − ω
〉
p
< 0,〈

ξU , υ − ω
〉
p
< 0,

which is not a solution of (IWMV V IP ). By Theorem 4.4, ω is not a weakly
LU-efficient solution of (IV OP ), which is a contradiction. □

5. Conclusion

In this study, we looked at a class of nonsmooth (IV OP ) and Stampacchia
and Minty type (V V I) in terms of convexificators, which are a weaker version of
the notion of subdifferentials. We developed relationships between Stampacchia
and Minty type (V V I) and LU-efficient (IV OP ) solutions using LU-convexity.
Also, we study the weak version of the (IV V I) of the Stampacchia and Minty
kind and determine the relationships between them and the weakly LU-efficient
solution of the (IV OP ).
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References

1. D. Chan and J.S. Pang, The generalized quasi variational inequality problems, Math. Oper.
Research 7 (1982), 211-222.
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