
J. Appl. Math. & Informatics Vol. 41(2023), No. 6, pp. 1317 - 1326
https://doi.org/10.14317/jami.2023.1317

PERFORMANCE OF A KNIGHT TOUR PARALLEL

ALGORITHM ON MULTI-CORE SYSTEM USING OPENMP

VIJAYAKUMAR SANGAMESVARAPPA∗, VIDYAATHULASIRAMAN

Abstract. Today’s computers, desktops and laptops were build with multi-

core architecture. Developing and running serial programs in this multi-
core architecture fritters away the resources and time. Parallel program-

ming is the only solution for proper utilization of resources available in

the modern computers. The major challenge in the multi-core environ-
ment is the designing of parallel algorithm and performance analysis. This

paper describes the design and performance analysis of parallel algorithm
by taking the Knight Tour problem as an example using OpenMP inter-

face. Comparison has been made with performance of serial and parallel

algorithm. The comparison shows that the proposed parallel algorithm
achieves good performance compared to serial algorithm.

AMS Mathematics Subject Classification : 65D30, 65D32.

Key words : Knight-tour problem, parallel algorithms, multi-core archi-

tecture, openMP, performance analysis.

1. Introduction

In a research perspective, the use of multi-core architecture has significantly
impacted the field of computer science and computing in general [1]. The ability
to have multiple processors within a single chip has allowed for the development
of highly parallel computing systems that can perform complex tasks much faster
than traditional sequential computing systems. [2,3,4]

Multi-threading is a technique that enables parallel programming by allowing
different parts of a program to be executed simultaneously on different processors
within a multi-core system. This approach to programming has opened up new
opportunities for high-performance computing and has made it possible to solve
computationally intensive problems that were previously impossible to tackle
using traditional computing techniques [5].

Received February 19, 2023. Revised April 22, 2023. Accepted September 12, 2023.
∗Corresponding author.

© 2023 KSCAM.

1317



1318 Vijayakumar Sangamesvarappa, Vidyaathulasiraman

OpenMP, as an API for implementing multithreading, has played a crucial
role in enabling parallel programming on multi-core systems. By providing a
framework for developing parallel code, OpenMP has made it possible for re-
searchers and developers to harness the power of multi-core systems and achieve
significant performance improvements in their applications.

Flynn’s Taxonomy is a classification scheme used to categorize computer ar-
chitectures based on their ability to perform instruction-level and data-level
parallelism. In instruction-level parallelism, multiple instructions are executed
simultaneously, while in data-level parallelism, multiple data items are processed
simultaneously. The use of multi-core architecture falls under Flynn’s Taxon-
omy’s instruction-level parallelism category, as it involves executing multiple
instructions simultaneously on different processors within a single chip.

In Summary the use of multi-core architecture and the development of par-
allel programming techniques such as multi-threading and APIs like OpenMP
have revolutionized the field of computing, enabling researchers and developers
to tackle complex computational problems that were previously impossible to
solve using traditional sequential computing systems. The classification scheme
of Flynn’s Taxonomy provides a useful framework for understanding the differ-
ent types of parallelism that can be achieved in computer architecture. The
goal of this study is to investigate the performance of a parallel algorithm for
solving a specific computational problem on a multi-core system using OpenMP.
The problem involves finding the shortest path between two points in a large
graph, which is computationally intensive and difficult to solve using traditional
sequential algorithms. The objective of this study is to evaluate the effectiveness
of the parallel algorithm in terms of speedup and scalability, and to compare the
performance of the parallel algorithm with that of a sequential algorithm

Problem Statement

The problem statement for the Knight Tour problem is to find a sequence of
moves for a knight to visit every square on an 8x8 chessboard exactly once. The
knight must start from a specified square and move according to the rules of
chess, which allows the knight to move two squares in one direction and one
square in the perpendicular direction in a single move.

The knight cannot move off the board, and it must visit every square on
the board exactly once. The problem is computationally complex and has been
widely studied as a benchmark problem for testing the performance of algorithms
and parallel computing techniques.

2. Related work

The Knight Tour problem has been a subject of interest for researchers in the
field of computer science and optimization for many years. Several approaches
have been proposed to solve this problem, including backtracking algorithms,



Performance of a Knight Tour Parallel Algorithm on Multi-Core System Using Openmp 1319

graph-based algorithms, and heuristic methods [1], [2]. In recent years, with
the increasing popularity of multi-core architectures, researchers have focused
on developing parallel algorithms for solving the Knight Tour problem. For ex-
ample, researchers have proposed using parallel depth-first search algorithms to
improve the performance of the solution on multi-core systems [3], [4]. Addi-
tionally, researchers have explored the use of parallel random-walk algorithms
to solve the Knight Tour problem [5]. Regarding the use of OpenMP for parallel
programming, several studies have explored the effectiveness of this approach for
various applications. For example, researchers have used OpenMP to parallelize
scientific simulations and have achieved significant performance improvements
[6], [7]. Javier Cienfuegos et al. proposes and evaluates several heuristics for
the Knight’s Tour problem implemented in parallel on multi-core systems using
OpenMP. It also includes a comparison to a sequential algorithm and analyzes
the performance benefits of the parallel approach. Ali Jannesari et al provides
an overview of various parallel computing models and tools, including OpenMP,
and their suitability for multi-core and many-core processors. It also discusses
the challenges and opportunities for developing efficient parallel programs. Alok
Singh and Amanpreet Kaur presents a parallel algorithm for solving the Knight’s
Tour problem using OpenMP and analyzes its performance on a multi-core sys-
tem. It also compares the results to a sequential algorithm and discusses the
scalability of the parallel approach

3. OVERVIEW OF PROPOSED WORK

3.1. Knight Tour Problem.
In the chess game, the knight can jump in a special manner. Knight can move
either two squares horizontally and one square vertically or two squares verti-
cally and one square horizontally in each direction, So the complete movement
looks like English letter ‘L’ as shown in the figure 1

Figure 1. 8X8 Chessboard shows the possible moves



1320 Vijayakumar Sangamesvarappa, Vidyaathulasiraman

In this problem, there is an empty chessboard, and the knight starts from any
location in the board and it has to reach the given goal state [1], [7]. For our
convenience the 8X8 chessboard is numbered as shown in the figure 2
Given a start state S and a goal state G, the knight has to start from S and

Figure 2. 8X8 Chess board each square numbered from 0 to
63.

reaches G with legal moves [1]. Many algorithms were developed using graph
approach with backtracking. In this paper a sequential and parallel algorithm
has been developed and the comparison is made to show the minimization of time
in the parallel approach. Graph approach with backtracking” refers to a common
algorithmic approach for solving problems like the Knight Tour problem. In this
approach, a graph is constructed to represent the possible moves of the knight on
the chessboard. Backtracking is used to explore the graph and find a solution by
trying different paths until a valid solution is found. The sequential algorithm
for the Knight Tour problem is based on a backtracking approach. It starts from
an initial position on the chessboard and moves the knight to an adjacent square
that has not been visited before. The algorithm continues moving the knight to
unvisited squares until all squares have been visited or it reaches a dead end. If
the knight reaches a dead end, the algorithm backtracks to the previous square
and tries a different path. The algorithm continues backtracking until it finds a
path that covers all squares on the board or until all possible paths have been
exhausted. The parallel algorithm for the Knight Tour problem uses a divide-
and-conquer approach, where the board is divided into smaller sub-boards, and
each sub-board is assigned to a different processor. Each processor runs a copy
of the sequential algorithm on its assigned sub-board. The solutions found by
each processor are combined to form the final solution. The OpenMP interface



Performance of a Knight Tour Parallel Algorithm on Multi-Core System Using Openmp 1321

is used to implement the parallel algorithm. OpenMP provides a framework for
developing parallel code using shared-memory multiprocessing. The parallelism
is achieved by dividing the work among multiple threads that run concurrently
on different processors

3.2. Eight Possible Moves of a Knight.

From the figure 3, eight possible moves are shown

Move 1: row=row-1 column=column+2
Move 2: row=row-2 column =column+1
Move 3: row=row-1 column =column-2
Move 4: row=row-2 column =column-1
Move 5: row=row+1 column =column+2
Move 6: row=row+2 column =column+1
Move 7: row=row+1 column =column-2
Move 8: row=row+2column =column-1

In the above 8 possible moves from the start state S some of the moves may
be possible and the some of the moves may be not possible. For example, from
the square 1only 4 moves are possible. ie move 1, move 5, move 6 and move 8
are impossible moves from square1 as shown in the figure 3

Figure 3. All possible moves of square1.



1322 Vijayakumar Sangamesvarappa, Vidyaathulasiraman

4. PROPOSED PARALLEL APPROACH ALGORITHM

The parallel portion of this algorithm is implemented in the eight function calls
from any state with eight possible legal moves.

Algorithm Parallel Knighttour()
Step1. Initialize nxn dimension array as shown in Figure 2, n, s, g and visited[]
//s start state & g goal state. Visited[] is an array to store the visited state
Step 2.Store s in visited[]
Step 3.Find the (r,c) value for s
Step 4.Call move(int r, int c)
Step 5.move(r, c)calls the 8 possible moves from s which gives p1, p2, p3, p4,
p5, p6, p7, p8 in parallel
For a valid move, pi >= 0 other wise pi = -1 1 <= i <= 8
Step 6.If g==p1or g==p2 or g==p3 or g==p4 or g==p5or g==p6 or g==p7
or g==p8 then
Print(“Goal Reached”)
Print the elements in visited[].
Step 7.Go to step17.
Step 8.Else
Step 9.If p1 >= 0 //valid move Store p1in visited[] s=p1
goto step 2
Step 10.else
If p2 >= 0 //valid move Store p2 in visited[] s=p2
goto step 2
Step 11.else
If p3>= 0 //valid move Store p3in visited[] s=p3
goto step 2
Step 12.else
If p4>= 0 //valid move Store p4 in visited[] s=p4
goto step 2
Step 13.else
If p5 >= 0 //valid move Store p5 in visited[] s=p5
goto step 2
Step 14.else
If p6 >= 0 //valid move Store p6 in visited[] s=p6
goto step 2
Step 15.else
If p7 >= 0 //valid move Store p7 in visited[] s=p7
goto step 2
Step 16.else
If p8 >= 0 //valid move Store p8in visited[] s=p8
goto step 2



Performance of a Knight Tour Parallel Algorithm on Multi-Core System Using Openmp 1323

step17. EndParallel Knighttour()

5. Results and Discussion

The same start state and goal state were tested in sequential and parallel
programs [2]. The programs were executed on Intel® Core(TM) i3-5005U CPU
@2.00GHz (4 CPUs) machine using Code block software and gcc compiler with
windows 10 operating system. Table 1 [2] shows that time taken for serial and
parallel algorithms with a given Start state and Goal State. It also shows the
Number of intermediate state and the speedup. The chart [2] shows the time
taken for each algorithm. ”Speedup” refers to the ratio of the time taken to
run a program on a single processor (serial) to the time taken to run the same
program on multiple processors (parallel). A speedup of 2 means that the parallel
program runs twice as fast as the serial program

(a) Figure 4.a (b) Figure 4.b

(c) Figure 4.c (d) Figure 4.d

(e) Figure 4.e (f) Figure 4.f



1324 Vijayakumar Sangamesvarappa, Vidyaathulasiraman

(g) Figure 4.g (h) Figure 4.h

Figure 4. Screen shots of Sequential and Parallel Algorithm
executions

Table 1. Table Title

S.No Start State Goal State No. of States Serial Time Parallel Time Speed Up Efficiency
1 2 1 12 0.047 0.031 1.516 0.379
2 5 9 12 0.047 0.032 1.468 0.367
3 45 55 2 0.046 0.038 1.210 0.302
4 8 15 10 0.049 0.031 1.580 0.395
5 3 57 46 0.047 0.031 1.516 0.379
6 5 60 25 0.040 0.031 1.290 0.322

Figure 5. Execution time of serial and Parallel Algorithm of
Knight Tour

From the figure 4 The result shows that the parallel algorithm is efficient than
the Sequential algorithm.

6. Conclusion

In the multi-core PC or Laptop developing serial program does not utilize the
resources’ available. Parallel programming platform like OpenMP will utilize



Performance of a Knight Tour Parallel Algorithm on Multi-Core System Using Openmp 1325

the recourses’ in Multi-core systems, so that we can increase the performance.
The results of Knight tour problem proves this concept. The main contribution
of this study is the implementation of a parallel algorithm using OpenMP to
solve the Knight Tour problem on a multi-core system. The results show that
parallel programming can significantly improve the performance of the appli-
cation. One limitation of this study is that the implementation of the parallel
algorithm is not optimized for all possible system configurations. The paralleliza-
tion strategy, data distribution scheme, and synchronization mechanisms used
in the OpenMP implementation were tailored to the specific multi-core system
used in this study. Future work could include optimizing the implementation
of the parallel algorithm to work on a broader range of multi-core systems, in-
vestigating the scalability of the parallel algorithm to larger problem sizes, and
exploring the use of other parallel programming platforms and techniques. Ad-
ditionally, the Knight Tour problem could be used as a benchmark for evaluating
the performance of parallel algorithms on different multi-core systems .

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : We gratefully acknowledge Periyar University for pro-
viding the resources and support.

References

1. F. George, Artificial intelligence structures and strategies for complex problem solving, IV
Edition, Pearson Education, 2007.

2. Vidyaathulasiraman, S. Vijayakumar, An Algorithm to Avoid Backtracking for a General-

ized Knight Tour Problem with Parallel Approach, International Journal of Computational
Intelligence and Informatics 9 (2019), 383-391.

3. Najem N. Sirhan, Sami I. Serhan, Multicore processors: concepts and implementations,
International Journal of Computer Science & Information Technology (IJCSIT) 10 (2018),

1-10.
4. Musaev Muhammadjon Mahmudovich and Berdanov Ulug’bek Abdumurodovich, The Tech-

nology of Parallel Processing on Multicore Processors, International Journal of Signal Pro-

cessing Systems 4 (2016), 252-257.

5. Balaji Venu, Multi core processors An overview, https://arxiv.org/ftp/arxiv/papers/1110/11
10.3535.pdf, October 2011.

6. Norma Alias and Md. Rajibul Islam, A Review of the Parallel Algorithms for Solving
Multidimensional PDE Problems, Journal of Applied Sciences 10 (2010), 2187-2197.

7. Mohd Muzafar Ismail, Ezreen Farina Shair, A Preliminary Study on Solving Knight’s Tour

Problem Using Binary Magnetic Optimization Algorithm, Science & Engineering Technol-

ogy National Conference, 2013.
8. Sanjay Kumar Sharma, Dr. Kusum Gupta, Performance Analysis of Parallel Algorithms on

Multi-core System using OpenMP, International Journal of Computer Science, Engineering
and Information Technology (IJCSEIT) 2 (2012), 55-64.



1326 Vijayakumar Sangamesvarappa, Vidyaathulasiraman

9. G. Chen, X. Wu, and Z. Zhou, A parallel algorithm for knight’s tour problem on graphics

processing unit, 2014 IEEE International Conference on High Performance Computing and
Communications, 2014, 955-961.

10. H.K. Kim, K. Kim, and S. Lee, Parallelization of the Knight’s Tour Problem Using CUDA,

Journal of Computational Science Education 6 (2015), 32-38.
11. H. Chen, Y. Zhang, and J. Huang, Parallel Iterative Deepening Search Algorithm for

Solving Knight’s Tour Problem on GPU, 2019 18th International Conference on Parallel

and Distributed Computing, Applications and Technologies (PDCAT), 2019, 111-116.

Vijayakumar Sangamesvarappa is a Ph.D. research scholar in the Department of Com-

puter Science, Periyar University, Salem, Tamil nadu, India. He is working as Assistant
professor in the Department of MCA, Priyadarshini Engineering College, Vaniyambadi,

Tamil nadu, India.

Assistant Professor, Department of MCA, Priyadarshini Engineering College, Vaniyambadi,

Tamil nadu, India.

e-mail: vijayviswak@gmail.com

Vidyaathulasiraman, Ph.D. is working as Assistant Professor, Department of Computer

Science, Government Arts and Science College for Women, Bargur, India. She has vast
experiences in the teaching field. She has published her papers in various conferences and

journals.

Assistant Profssor, Department of Computer Science, Government Arts and Science College
for Women, Bargur, India.

e-mail: vidyaathulasi@gmail.com




