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A STUDY ON DEGENERATE q-BERNOULLI POLYNOMIALS

AND NUMBERS†

HUI YOUNG LEE, CHUNG HYUN YU∗

Abstract. In this paper, the degenerate q-Bernoulli polynomials are de-

fined by generalizing it more, and various properties of these polynomials

are introduced. To do this, we define generating functions of them and use
the definition to introduce some interesting properties. Finally, we observe

the structure of the roots for the degenerate q-Bernoulli polynomials.
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1. Introduction

Many researchers have used the generative function t
et−1e

xt and t
et−1 to de-

fine classical Bernoulli polynomials and numbers and reveal their properties.
Their interesting properties are the relationship between polynomials and num-
bers, the sum of numbers, and symmetry properties. However, given a change
in the generative function, new similar Bernoulli polynomials and numbers can
be found, and similar new properties can be found. In this paper, exponential
function ex is more generalized and defined, and Bernoulli polynomials and num-
bers are defined using this definition. This allows us to observe more generalized
Bernoulli polynomials and numbers.

As already well known, the classical Bernoulli polynomials Bn(x) are given
by the generating function as follows:

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(cf. [1-13]). (1.1)

When x = 0, Bn = Bn(0) are called Bernoulli numbers.
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Figure 1. The various generating functions and Bernoulli
polynomial research flow chart (see, [2,9,11]).

In Figure 1, we can observe the relationship between the various generating
functions and the Burnoulli polynomials. The generating function at the bottom
right can be seen as a generalization of the other three generating functions. In
this paper, we define generalized Bernoulli polynomials and numbers define and
investigate their properties.

The main symbols used in this paper are as follows. N be the set of natural
numbers, Z+ be the set of nonnegative integers, Z be the set of integers, R be
the set of real numbers and C be the set of complex numbers, respectively.

We first introduce the basic concepts and sevaral exponential functions.
Let n, q ∈ R and q ̸= 1. Jackson defined the q-number as below:

[n]q =
1− qn

1− q

and limq→1[n]q = n.
For [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q = 1, q-binomial is defined by[

n
r

]
q

=
[n]q!

[n− r]q![r]q!
.

Many mathematicians have studied various exponential functions. First of
all, let’s start with the basic functions we know and find out what functions are
there.

1. et is well known exponential function. Also, since et is an analytic function
on complex number field, et is capable of series expansion as belows:

et =

∞∑
n=0

tn

n!
.
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2. eq(t) is a q-exponential function defiened as

eq(t) =

∞∑
n=0

tn

[n]q!
.

For real q > 1, the function eq(t) is an entire function of t, For 0 < q < 1,
eq(t) is regular in the disk |z| < 1/(1− q). Also, the inverse of eq(t) is eq−1(−t),
i.e., eq(t)eq−1(−t) = 1.

3. ep,q(t) is a (p, q)-exponential function defiened as

ep,q(t) =

∞∑
n=0

p(
n
2)tn

[n]p,q!
, Ep,q(t) =

∞∑
n=0

q(
n
2)tn

[n]p,q!
.

Here, [n]p,q = pn−qn

p−q .

4. (1 + λt)
1
λ is a degenerated exponetial function and lim

λ→0
(1 + λt)

1
λ = et.

More recently, Burcu Silindir and Ahmet Yantir [9] have generalized expo-
nential function with Definition 1.1 and 1.2 in the following way.

Definition 1.1. For 0 < q < 1, one define the generalized quantum binomial,
(q, h)-analogue of (x− x0)

n, as the polynomial

(x− x0)
n
q,h =

1 if n = 0,
n

Π
i=1

(x− (qi−1x0 + [i− 1]qh)) if n > 0,

where x0 ∈ R (see [9]).

When q → 1 and h → 0, the generalized quantum binomial approximates the
ordinary binomial as belows:

lim
(q,h)→(1,0)

(x− x0)
n
(q,h) = (x− x0)

n.

In this paper, (x− 0)n(q,h) is denoted as (x)nq,h for convenience.

That is, (x− 0)n(q,h) = (x)nq,h = x(x− [1]qh)(x− [2]qh) · · · (x− [n− 1]qh).

Burcu Silindir and Ahmet Yantir have already defined the exponential func-
tion as following Definition 1.2 and we note that we have used different type to
avoid confusion.

Definition 1.2. For 0 < q < 1, one define the degenerated q-exponential func-
tion, denote by

eq,h(x : t) =

∞∑
n=0

(x)nq,h
[n]q!

tn,

where (0)0q,h = 1, for n ∈ N and eq,h(0, t) = 1.
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From Definition 1.1, we get

(1− 0)nq,h =

n∏
i=1

(1− [i− 1]qh)

= (−1)n−1
n−1∏
i=1

1

[i]q

(
h− 1

[i]q

)

=
1∏n−1

i=1 [i]q

n−1∑
j=0

(−h)n−1(−h−1)jAn−1,j(
1

[i]q
), (1.2)

where An,k(
1

[i]q
) is sum of all k selectable out of n’s 1

[i]q
.

By1.2, we obtain

eq,h(1 : t) =

∞∑
m=0

(1− 0)nq,h
tn

[n]q

=

∞∑
n=0

(−1)n−1 1∏n−1
i=1 [i]q

n−1∑
j=0

(−1)jhn−j−1An−1,j(
1

[i]q
)
tn

[n]q!
.

2. A degenerate q-Bernoulli polynomial and it’s properties

Definition 2.1. For 0 < q < 1 and t ∈ R, we define a degenerate q-Bernoulli
polynomials and numbers by the following generating function

t

eq,h(1 : t)− 1
eq,h(x : t) =

∞∑
n=0

βn,q(x : h)
tn

[n]q!

and
t

eq,h(1 : t)− 1
=

∞∑
n=0

βn,q(h)
tn

[n]q!
.

When q → 1 and h = 0 it is equal to the classical Bernoulli polynomial.

A two-parameters time scale Tq,h is introduced as follows:

Tq,h := {qnx+ [n]qh|x ∈ R, n ∈ Z, h, q ∈ R+, q ̸= 1} ∪ { h

1− q
}.

Definition 2.2. Let f : Tq,h → R be any function. Then, the delta (q, h)-
derivative of f , Dq,h(f) is defined by

Dq,hf(x) =
f(qx+ h)− f(x)

qx+ h− x
.
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From the above Definition 2.2, we can get several properties as belows:

Dq,h(x)
n
q,h = [n]q(x)

n−1
q,h ,

Dq,heq,h(x : t) = teq,h(x : t).

By the Definition 2.1 and (αx)nq,h = αn(x)n
q, hα

, we get the following identity.

∞∑
n=0

βn,q(αx : h)
tn

[n]q!
=

t

eq,h(1 : t)− 1
eq,h(αx : t)

=

∞∑
n=0

βn,q(h)
tn

[n]q!
×

∞∑
n=0

(αx)nq,h
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

βn−k,q(h)(αx)
k
q,h

)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

βn−k,q(h)α
k(x)k

q, hα

)
tn

[n]q!
.

Comparing the coefficient on both sides, we obtain the desired result.

Theorem 2.1. Let n be a nonnegative integers, α, h ∈ R and 0 < q < 1. We
have

βn,q(x : h) =

n∑
k=0

[
n
k

]
q

βn−k,q(h)(x)
k
q,h

=

n∑
k=0

[
n
k

]
q

αkβn−k,q(h)(x)
k
q, hα

.

Theorem 2.2. Let n be a nonnegative integers, k ∈ Z and 0 < q < 1. We have{
β1,q(1 : h)− βn,q(h) = 1 if n = 1,

βn,q(1 : h)− βn,q(h) = 0 if n ≥ 2.

Proof. It is easily checked that

t =
t

eq,h(1 : t)− 1
(eq,h(1 : t)− 1)

=
t

eq,h(1 : t)− 1
eq,h(1 : t)− t

eq,h(1 : t)− 1

=

∞∑
n=0

βn,q(1 : h)
tn

[n]q!
−

∞∑
n=0

βn,q(h)
tn

[n]q!

=

∞∑
n=0

(βn,q(1 : h)− βn,q(h))
tn

[n]q!
.

Comparing the coefficient on both sides, we obtain the desired result.
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Definition 2.1 is represented as below:

t

eq,h(1 : t)− 1
eq,h(x : t) =

∞∑
n=0

βn,q(x : h)
tn

[n]q!
= eq(βq(x : h)t).

Also, above identity is represented as below:

teq,h(x : t) = eq(βq(x : h)t)eq,h(1 : t)− eq(βq(x : h)t).

Above identity is equal to

t

∞∑
n=0

(x)nq,h
tn

[n]q!
=

∞∑
n,q

βn,q(x : h)
tn

[n]q!
×

∞∑
n=0

(1)nq,h
tn

[n]q!
−

∞∑
n=0

βn,q(x : h)
tn

[n]q
.

Above identity is equal to

∞∑
n=0

[n]q(x)
n−1
q,h

tn

[n]q!
=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

βk,q(x : h)(1)n−k
q,h − βn,q(x : h)

)
tn

[n]q!
.

Comparing the coefficient on both sides and by equation (1.2), we obtain the
desired result as following.

Theorem 2.3. Let n be a nonnegative integer, k ∈ Z and 0 < q < 1. We have

[n]q(x)
n−1
q,h =

n∑
k=0

[
n
k

]
q

βk,q(x : h)(1)n−k
q,h − βn,q(x : h)

=

n∑
k=0

[
n
k

]
q

βk,q(x : h)
1∏n−1

i=1 [i]q

n−k−1∑
j=0

(−h)n−k−1(−h−1)jAn−k−1,j(
1

[i]q
)

− βn,q(x : h).

Theorem 2.4. Let n be a nonnegative integer, h, q ∈ R and 0 < q < 1. Then

Dq,h(βn,q(x : h)) = [n]qβn−1,q(x : h).

Proof. From the Definition 2.2, we get the relation of (q, h)-derivative for the
degenerate q-Bernoulli polynomials as belows. It is easily checked that

Dq,h(βn,q(x : h)) = Dq,h

(
n∑

k=0

[
n
k

]
q

βn−k,q(h)(x)
k
q,h

)

=

n∑
k=1

[
n
k

]
q

βn−k,q(h)Dq,h(x)
k
q,h

=

n∑
k=1

[
n
k

]
q

βn−k,q(h)[k]q(x)
k−1
q,h

= [n]q

n−1∑
s=0

[
n− 1
s

]
q

βn−1−s,q(h)(x)
s
q,h

= [n]qβn−1,q(x : h).
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Thus, limq→1 Dq,h(βn,q(x : h)) = Dh(βn(x : h)) = nβn−1(x : h) and

limq→1 βn−k,q(x : h) = βn−k(x : h) = (n−k)!
n! D

(k)
h βn(x : h),

limh→0 Dq,hβn,q(x : h) = [n]qβn−1,q(x) and limh→0 βn−k,q(x : h) = βn−k,q(x) =
[n−k]!
[n]! D

(k)
q βn,q(x).

Theorem 2.5. Let 0 < q < 1 and h ∈ N. Then, we get

βn−k,q(x : h) =
[n− k]q!

[n]q!
D

(k)
q,hβn,q(x : h).

Proof Let’s consider below. From the Theorem 2.4

D
(k)
q,hβn,q(x : h) = D

(k−1)
q,h [n]qβn−1,q(x : h)

= D
(k−2)
q,h [n]q[n− 1]qβn−2,q(x : h)

:

:

= [n]q[n− 1]q · · · [n− k + 1]qβn−k,q(x : h)

=
[n]q!

[n− k]q!
βn−k,q(x : h).

From the Definition 2.1 and Theorem 2.5, we get a differential equation as
below:

Theorem 2.6. Let 0 < q < 1 and n be a nonnegative integer. Then, we get
n∑

k=0

(1)kq,h
[k]q!

(
D

(k)
q,hβn,q(x : h)

)
− βn,q(x : h)− [n]q(x)

n−1
q,h = 0.

From the Definition 2.1,
∞∑

n=0

βn,q(x : h)
tn+1

[n]q!
=

(
t

eq,h(1 : t)− 1
eq,h(1 : t)− t

eq,h(1 : t)− 1

)
teq,h(x : t)

eq,h(1 : t)− 1

=

∞∑
n=0

(βn,q(1 : h)− βn,q(h))
tn

[n]q!
×

∞∑
n=0

βn,q(x : h)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

(βn−k,q(1 : h)− βn−k,q(h))βk,q(x : h)

)
tn

[n]q!
.

If we rearrange the left side of the above expression, then
∞∑

n=1

[n]qβn−1,q(x : h)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

(βn−k,q(1 : h)− βn−k,q(h))βk,q(x : h)

)
tn

[n]q!
.

Hence, comparing both sides for t, we get the following theorem:
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Theorem 2.7. For n ∈ N and 0 < q < 1

[n]qβn−1,q(x : h) =

n∑
k=0

[
n
k

]
q

(βn−k,q(1 : h)− βn−k,q(h))βk,q(x : h).

Corollary 2.7.1. For n ∈ N and 0 < q < 1,
n∑

k=0

βk,a(1 : h)− βk,q(h)

[k]q!
D

(n−k)
q,h βn,q(x : h)− [n]qβn−1,q(x : h) = 0.

From Definition 2.1, we get

∞∑
n=0

βn,q(αx)
tn

[n]q!
=

t

eqh(1 : h)− 1
eq,h(αx : t)

=

∞∑
n=0

βn,q(h)
tn

[n]q!
×

∞∑
n=0

(αx)nq,h
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

βn−k,q(h)(αx)
k
q,h

)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

αk

[
n
k

]
q

βn−k,q(h)(αx)
k
q,hα−1

)
tn

[n]q!
.

Hence, comparing both sides for t, we get the following theorem:

Theorem 2.8. For n ∈ N, α, q ∈ R and 0 < q < 1,

βn,q(αx) =

n∑
k=0

[
n
k

]
q

βn−k,q(h)(αx)
k
q,h

=

n∑
k=0

αk

[
n
k

]
q

βn−k,q(h)(αx)
k
q,hα−1 .

From Definition 2.1, we get

∞∑
n=0

βn,q(qx)
tn+1

[n]q!
=

t

eqh(1 : h)− 1
eq,h(qx : t)

=
1

q

(
qt

eq,q−1h(1; qt)− 1
eq,q−1h(1 : qt)− qt

eq,q−1h(1 : qt)− 1

)
t

eq,h(1 : t)− 1
eq,h(qx : t)

=

∞∑
n=0

qn−1

(
βn,q(1 : q−1h)− βn,q(q

−1h)
tn

[n]q

) ∞∑
n=0

βn,q(qx : h)
tn

[n]q!

=

∞∑
n=0

[
n
k

]
q

qk−1
(
βk,q(1 : q−1h)− βk,q(q

−1h)
)
βn−k,q(qx : h)

tn

[n]q!
.
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If we rearrange the left side of the above expression, then
∞∑

n=1

nβn−1,q(qx : h)
tn

[n]q!

=

∞∑
n=0

qk−1

[
n
k

]
q

(
βk,q(1 : q−1h)− βk,q(q

−1h)
)
βn−k,q(qx : h)

tn

[n]q!
.

Hence, comparing both sides for t, we get the following Theorem 2.9.

Theorem 2.9. For n ∈ N and 0 < q < 1,

βn−1,q(qx : h)

=
1

n

n∑
n=0

qk−1

[
n
k

]
q

(
βk,q(1 : q−1h)− βk,q(q

−1h)
)
βn−k,q(qx : h).

3. Computational values and graphical representations of degenerate
q-Bernoulli polynomials

In this section, computational values and graphical representations of degen-
erate q-Bernoulli polynomials βn,q(x : h) are shown.

A few of them are

β0,q(x : h) = 1,

β1,q(x : h) = x− 1

[2]q!
+

h

[2]q!
,

β2,q(x : h) = −x+ x2 +
1

[2]q!
− 2h

[2]q!
+

h2

[2]q!
− [2]q!

[3]q!
+

2h[2]q!

[3]q!
− h2[2]q!

[3]q!

+
hq[2]q!

[3]q!
− h2q[2]q!

[3]q!
,

β3,q(x : h) = −x+ 2hx+ hqx− 2hx2 − hqx2 + x3 +
2

[2]q!
− 6h

[2]q!
+

6h2

[2]q!

2h3

[2]q!

− 2hq

[2]q!
+

4h2q

[2]q!
− 2h3q

[2]q!
− [3]q!

([2]q!)3
+

3h[3]q!

([2]q!)3
− 3h2[3]q!

([2]q!)3

+
h3[3]q!

([2]q!)3
+

x[3]q!

([2]q!)2
− hx[3]q!

([2]q!)2
− x2[3]q!

([2]q!)2
+

hx2[3]q!

([2]q!)2
− [3]q!

[4]q!

+
3h[3]q!

[4]q!
− 3h2[3]q!

[4]q!
+

h3[3]q!

[4]q!
+

2hq[3]q!

[4]q!
− 4h2q[3]q!

[4]q!
+

2h3q[3]q!

[4]q!

+
hq2[3]q!

[4]q!
− 3h2q2[3]q!

[4]q!
+

2h3q2[3]q!

[4]q!
− h2q3[3]q!

[4]q!
+

h3q3[3]q!

[4]q!
.
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We investigate the beautiful zeros of the degenerate q-Bernoulli polynomials
βn,q(x : h) by using a Mathematica 12.1. We plot the zeros of the degenerate
q-Bernoulli polynomials βn,q(x : h) = 0 for n = 30 (Figure 2).
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0.0
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Im(x)

-2 -1 0 1 2
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-4 -2 0 2 4
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4
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Im(x)

Figure 2. Zeros of βn,q(x : h) = 0

In Figure 2(top-left), we choose q = 5
10 and h = 1

10 . In Figure 2(top-right),

we choose q = 7
10 and h = 1

100 . In Figure 2(bottom-left), we choose q = 9
10 and

h = 1
1000 . In Figure 2(bottom-right), we choose q = 99

100 and h = 1
10000 .
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Stacks of zeros of the degenerate q-Bernoulli polynomials βn,q(x : h) = 0 for
3 ≤ n ≤ 30, forming a 3D structure, are presented (Figure 3).

Figure 3. Zeros of βn,q(x : h) = 0

In Figure 3(top-left), we choose q = 5
10 and h = 1

10 . In Figure 3(top-right),

we choose q = 7
10 and h = 1

100 . In Figure 3(bottom-left), we choose q = 9
10 and

h = 1
1000 . In Figure 3(bottom-right), we choose q = 99

100 and h = 1
10000 .
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Next, we calculated an approximate solution satisfying the degenerate q-
Bernoulli polynomials βn,q(x : h) = 0 for q = 9

10 , h = 1
10 . The results are

given in Table 1.

Table 1. Approximate solutions of βn,q(x : h) = 0

n x

1 0.60000

2 0.11641, 0.88359

3 −0.040625, 0.36233, 0.97830

4 −0.020225, 0.052324, 0.51673, 1.0012

5 −0.013119± 0.079112i

0.20481, 0.59408, 1.0024

6 0.039761± 0.130296i,

−0.043048, 0.33060, 0.61976, 1.0007

7 0.0005079± 0.0066442i, 0.07819± 0.14745i,

0.41936, 0.61698, 1.0000

8 −0.026494± 0.058655i, 0.09391± 0.17187i,

0.18635, 0.47211, 0.60363, 0.99994

9 0.003958± 0.103753i, 0.12310± 0.19300i,

0.30560,−0.042553, 0.48684, 0.59444, 0.99998

10 −0.011499± 0.026214i, 0.034779± 0.121788i,

0.14739± 0.19954i,

0.41655, 0.44598, 0.59535, 1.0000

11 −0.029523± 0.046394i, 0.04120± 0.14218i,

0.44649± 0.06323i, 0.16107± 0.20553i,

0.16220 0.59893, 1.0000

In conclusion, the degenerated q-Bernouulli polynomials’s generating function
can be seen as a degenerated generating funtion of the Bernoulli polynomials,
the q-Bernoulli polynomial and the degenerated Bernoulli polynomials.
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