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Abstract. The tree products of groups with amalgamation subgroups are

generalizations of the free products of groups with amalgamation subgroup.
The aim of this paper is to construct a tree called the standard tree where

the tree products of groups with amalgamation subgroups act without in-
versions and then find the quotient of this action. Furthermore, we show

that if the amalgamation subgroups are finite and the factor groups act on

disjoint trees then there exists a tree called the fiber tree where the tree
products of groups with amalgamation subgroups act without inversions

and find the quotients of this action. If each factor is a tree products with

amalgamation subgroups, we get a new fiber tree and the corresponding
factors.
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1. Introduction

Within the specialized domain of group theory, this article endeavors to un-
ravel the intricate fibers of tree products of groups with amalgamation sub-
groups. The study of fibers in groups acting on trees with inversions was initially
illuminated through [1], Theorem 6.1, establishing a foundation for our investi-
gation. Now, expanding our lens, we delve into the expansive landscape of tree
products of groups with amalgamation subgroups and their corresponding fiber
structures.

While our focus remains resolutely on the realm of group theory, it is worth
noting the parallel intellectual pursuits that have contributed to the broader
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mathematical landscape. Notably, Al-Husban et al. (2022) presented a ground-
breaking work on ”Multi-Fuzzy Rings” in the context of the multimember ship
function, offering insights into multi-fuzzy binary operations and their potential
applications within ring theory. Their findings, as published in WSEAS Trans-
actions on Mathematics [2], provide a glimpse into the diverse applications of
mathematical concepts in various contexts.

Similarly, Hawawsheh et al. (2023) embarked on a journey into the world of
spherical integral operators in their article ”Lp-Mapping Properties of a Class
of Spherical Integral Operators” [3]. By establishing inequalities that connect
these operators with Marcinkiewicz integral operators, they contribute to the
further understanding of this specialized area. Their study, published in Axioms,
showcases the synergy between theoretical insights and practical applications
within the mathematical domain.

Building upon this trajectory, Hazaymeh et al. delved into the realm of
numerical radius inequalities and perturbed Milne’s quadrature rules. In ”On
Further Refinements of Numerical Radius Inequalities” [5], they present novel
extensions of existing numerical radius inequalities, exemplifying the dynamic
nature of mathematical research in refining and enhancing known results. Their
unified approach fosters a deeper understanding of the interplay between differ-
ent mathematical concepts.

Furthermore, Hazaymeh et al.’s work in ”A Perturbed Milne’s Quadrature
Rule for n-Times Differentiable Functions with Lp-Error Estimates” [4] show-
cases the utilization of perturbed quadrature rules for n-times differentiable func-
tions, extending the applicability of Milne’s quadrature rule. By addressing spe-
cific scenarios and offering new insights, they emphasize the practical relevance
of theoretical developments, underscoring the symbiotic relationship between
theory and application.

Finally, Qawasmeh et al. (2023) contribute to the enhancement of numerical
radius inequalities with a refined perspective in ”Further Accurate Numerical
Radius Inequalities” [6]. This work not only highlights the ongoing efforts in
refining mathematical inequalities but also illustrates the iterative nature of
mathematical research, where existing results are continually built upon and
improved.

In the midst of these diverse intellectual pursuits, our exploration of tree
products of groups with amalgamation subgroups stands as a testament to the
multifaceted nature of mathematical inquiry and its potential to illuminate new
avenues of understanding.

The tree products of groups with amalgamation subgroups serve as a natu-
ral generalization of the free products of groups with amalgamation subgroups.
This paper is driven by the overarching aim of establishing a robust framework
for understanding these structures. Our primary objective is the construction
of a ”standard tree,” a pivotal concept where the actions of tree products of
groups with amalgamation subgroups transpire devoid of inversions. Notably,
the insights derived from Theorem 6.1 of [1] guide our approach in this endeavor.
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For readers seeking a comprehensive grasp of our work, [1] provides valu-
able insights. The essential definitions concerning graphs, subgraphs, connected
graphs, trees, subtrees, paths, and groups’ actions on graphs – encompassing
stabilizers, orbits, and quotient graphs – are amply expounded across references
such as [1, 7, 8, 9, 10, 11, 12]. Those delving into groups’ actions on graphs
without inversions will find [7, 12] enlightening, while the intricacies of groups
with inversions are detailed in [9, 10, 11]. Intriguingly, the conceptual foundation
required for this article is substantially covered within [1].

The significance of this study lies in its profound implications for advancing
our understanding of tree products of groups with amalgamation subgroups and
their inherent fiber structures. By investigating the behaviors of these groups
in the context of tree actions, we seek to unlock potential avenues for further
research and exploration. The crux of the problem statement revolves around
discerning the standard tree and the fiber tree pertinent to groups with amalga-
mation subgroups, elucidating their distinctive properties, and delving into the
implications of resulting quotient actions. In doing so, we anticipate not only
enriching our comprehension of group actions and amalgamation subgroups but
also contributing to the broader domain of applied mathematics and its real-
world applications.

2. Presentations of groups acting on trees

This section will delve into the most well-liked and powerful presentation ideas
for groups acting on trees as we explore the intriguing world of groups acting
on trees. Mathematicians have been enthralled by the study of groups and how
they interact with trees for decades since it provides a wealth of information
about the complex interactions between combinatorial geometry and algebraic
structures.

Let G be a group acting on a graph X. We list the following concepts:

(i) V (X) is the set of vertices of X and E(X) is the set of edges of X on
which V (X) ̸= ∅ and V (X) ∩ E(X) = ∅.

(ii) If e ∈ E(X), then e is an edge of X, the terminal of e are o(e) ∈ V (X),
the initial of e, t(e) ∈ V (X), the terminal of e and e ∈ E(X), the inverse
of e satisfying the condition that o(e) = t(e), t(e) = o(e), and e = e.

(iii) The stabilizer of x ∈ X, where x is a vertex or an edge of X is denoted
Gx is the set Gx = {g ∈ G : g(x) = x}, where g(x) is the value of x
under the action of G on X via the element g. It is clear that Gx ≤ G
is a subgroup of G.

(iv) The orbit of x ∈ X, where x is a vertex or an edge of X is denoted G(x)
is the set G(x) = {g(x) = x | g ∈ G}. It is clear that G(x) ⊆ X is a
subset of X.

(v) The set of orbits of the action of G on X is denoted by G/X and is
defined to be the set G/X = {G(x) : x ∈ X}. It is clear that G/X
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forms a graph of set of vertices V (G/X) = {G(v) : v ∈ V (X)} and a set
of edges E(G/X) = {G(e) : e ∈ E(X)}.

If X is connected, then G/X is connected.
(vi) If e1, e2, . . . , en are edges of X, then P = (e1, e2, . . . , en) is called a

path in X if t (ei) = o (ei+1), i = 1, . . . , n − 1, and is called reduced if
ei+1 ̸= el, i = 1, . . . , n− 1. If o (e1) = v and t (en) = u, then P is called
a path in X joining the vertices u and v. Clearly, a graph X is a tree if
and distinct vertices of X are joining by exactly one reduced path.

(vii) The set of vertices of X fixed by G is the set

XG = {v ∈ V (X) | Gv = G} ⊆ V (X).

(viii) If g ∈ G is an element of G and e ∈ E(X) is an edge of X such that
g(e) = ē, then g we say that g contains an invertor edge of X.

(ix) If T is a subtree of X then T is called a tree of representatives for the
action of G on X if T satisfies the condition that T contains exactly one
vertex from each vertex orbit. That is, if v ∈ V (T ) then V (T )∩G(v) is of
cardinality |V (T )∩G(v)| = 1. Then every vertex v ∈ V (X), there exists
a unique vertex denoted v∗ such that v∗ ∈ V (T ) and G(v) = G (v∗).
That is, v = g (v∗) , g ∈ G, where G(v) = {g(v) : g ∈ G} is the orbit
containing v. v∗ is called the representative of the vertex v.

(x) If T is a tree of representative and Y is a subgraph ofX such that T ⊆ Y ,
then Y is called a transversal for the action of G on X if Y satisfies the
following conditions:

i. If e ∈ E(Y ), then o(e) or t(e) ∈ V (T ).
ii. If y ∈ E(Y ), then y and ȳ are in different orbits in caseG(y) ̸= G(ȳ).
iii. If x ∈ E(Y ), then x and x̄ are in same orbit in case G(x) = G(x̄).
(T ;Y ) is called a fundamental domain for the action of G on X.

(xi) The following subsets of edges of above transversal Y are called the
splitting edges of Y :

i. E0(Y ) = {m ∈ E(Y ) : o(m), t(m) ∈ E(T )} = E(T ), the set of
edges of T .

ii. E1(Y ) = {y ∈ E(Y ) : o(y) ∈ E(T ), t(y) /∈ E(T ), G(y) ̸= G(y)}.
iii. E2(Y ) = {x ∈ E(Y ) : o(x) ∈ E(T ), t(x) /∈ E(T ), G(x) = G(x)}.

(xii) For the edge e ∈ E(Y ) we have the following concepts related to the
fundamental domain (T, Y ):

i. If o(e) ∈ V (T ), there exists [e] ∈ G and called the value of e such
that [e] ((t(e))∗) = t(e).
Furthermore, we choose [e] = 1 in case e ∈ E(T ), and [e](e) = ē if
G(ē) = G(e).

ii. The sign of e, denoted +e is defined to be the edge +e = e if
o(e) ∈ V (T ) and +e = [e](e) if t(e) ∈ V (T ).
It is clear that o(+e) = (o(e))∗, t(+e) = [e] ((t(e))∗), +e = [e](+ē),
and G+e ≤ G(o(e))∗ .
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(xiii) If g ∈ G, the sum of g and e is denoted by g⊕ e and is defined to be the
pair g ⊕ e = (gG+e,+e). We have the following facts: The proofs are
clear.

i. g ⊕m = (gGmm,m), g[m]⊕m = (gGm,m) = g ⊕m, m ∈ E0(Y ).
ii. g ⊕ y = (gGy, y), g ⊕ ȳ =

(
gG[y]−1(y), [y]

−1(ȳ)
)
,

g[y]⊕ ȳ =

(
g[y]G[y]−1(y), [y]−1(y)

)
, y ∈ E1(Y ).

iii. g ⊕ x = g[x]⊕ x̄ = (g[x]Gx, x) = g[x]⊕ x, x ∈ E2(Y ).
(xiv) The inverse of g ⊕ e is g ⊕ e = g[e]⊕ e.
(xv) The star of X is denoted by X∗ and is defined to be the set

X∗ = {g ⊕ p | g ∈ G, p ∈ E(Y )} = {(gG+p,+p) | g ∈ G, p ∈ E(Y )}.
It is clear that

X∗ = {g ⊕m, g ⊕ y, g ⊕ ȳ, g ⊕ x | m ∈ E0(Y ), y ∈ E1(Y ), x ∈ E2(Y )} ,
and X∗ ≈ E(X). That is, there exists a map θ : X∗ → E(X) giving by
θ(g ⊕ e) = g(+e) which is one-one and onto.

We end this section the following important theorem.

Theorem 2.1. Let G be a group acting on a graph X of fundamental domain
(T, Y ) of the action of G on X such that XG = ∅. Then

(i) X is connected if and only if the set

∆(Y ) = {Gv, [e] | v ∈ V (T ), e ∈ E(Y )}
generates G.

(ii) If Y is a subtree of X, then X is a tree if and only if G has the presen-
tation

G =

〈
Gv, y, x | rel (Gv) , Gm = Gm̄, y · [y]−1Gy[y] · y−1 = Gy,

x ·Gx · x−1 = Gx, x
2 = [x]2

〉
,

(1)

via the mapping Gv → Gv, y → [y], x → [x], where v ∈ V (T ),m ∈
E0(Y ), y ∈ E1(Y ), and x ∈ E2(Y ), where the synbols of this presentation
can be find in [10, 11].

Proof. (i) See Lemma 2.1 of [11].
(ii) See Theorem 5.8 of [10] and Theorem 5.1 of [11].

□

3. The standard trees of tree products of groups with amalgamation
subgroups

The concepts of tree products of groups with amalgamation subgroups were
introduces in [8] as follows. Let Z be a tree. For each vertex v ∈ Z and an edge
e ∈ E(Z) let Av and Ae be groups such that Ae is a subgroup of both groups
Ao(e) and At(e) and there exists an isomorphism θe : Ae → Aē of the property
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that θ−1
ē = θe. The tree product of the groups Av, v ∈ V (Z) (with the subgroups

Ae, Aē, e ∈ E(Z)) with a tree Z is denoted by

A = π∗ (Av; θe (Ae) = Aē) , v ∈ V (Z), e ∈ E(Z),

or by

A = π∗ (Av;Ae = Aē) , v ∈ V (Z), e ∈ E(Z),

or by

A =

〈
Av

∣∣∣∣ rel (Av) , Ae = Aē

〉
, v ∈ V (Z), e ∈ E(Z),

when specific θe are implicit, where
〈
Av

∣∣ rel (Av)
〉
stands for any presentation

of the group Av and Ae = Aē stands for the set of relations h̃ = θ̃e(h) for all

e ∈ E(Z), and all h ∈ Ae, where h̃ is a word of the generating symbols of

the presentation
〈
Ao(e) | rel

(
Ao(e)

) 〉
of the group Ao(e) of value h and θ̃e(h) is

a word of the generating symbols of the presentation
〈
At(e)

∣∣ rel (At(e)

) 〉
of the

group At(e) of value θe(h). It is proved in [8] that the group Av is imbedded in A
via the imbedding λv : Av → A and the group A is generated by the generators
of the subgroups λv (Av) ≤ A of A, for all v ∈ V (Z). For simplicity, we write
λv (Av) = Av and say that Av is a subgroup of A. If Av ̸= A for all v ∈ V (Z)
then we say that A is a non-trivial tree product of groups.

Remark 3.1. For v ∈ V (Z) and e ∈ E(Z), the groups Av are called the factor
groups and the groups Ae are called the amalgamation subgroups of the tree
product of groups A described above.

The main result of this section is the following theorem.

Theorem 3.1. A group is a tree product of groups if and only if there exists a
tree on which the group acts without inversions, fixing no vertices, and of tree
of representatives equals its transversal.

Proof. (⇒). Let G be a group acting on the tree X of fundamental domain
(T ;Y ) such that T = Y . We need to show that G is a tree product of groups
with amalgamation subgroups. Since XG = ∅ and X is a tree, by Theorem 2.1,
G has the presentation (1) of Theorem 2.1. Since T = Y , therefore E1(Y ) =
E2(Y ) = ∅. Therefore the presentation (1) of G becomes G =

〈
Gv

∣∣ rel (Gv),

Gm = Gm̄

〉
, m ∈ E0(Y ) = E(T ). This shows that G is a tree product of the

groups Gv, v ∈ V (X) with amalgamation subgroups Gm, m ∈ E0(Y ) where
θm : Gm → Gm̄ is the identity map. Since XG = ∅, therefore Gv ̸= G for
all v ∈ V (X). Consequently, G is a tree product of groups with amalgamation
subgroups.
(⇐) Conversely, assume that G = A = π∗ (Av;Ae = Aē, ), v ∈ V (Z), e ∈
E(Z), is the tree product of the groups Av with amalgamation subgroups Ae,
e ∈ E(Z) of tree Z. Then A =

〈
Av

∣∣ rel (Av) , Ae = Aē

〉
. Let XA be the set
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XA = {(aAv, v) , (a (Ae) , e) | a ∈ A, v ∈ V (Z), e ∈ E(Z)}.
We need to show that XA forms a tree of set of vertices

V (XA) = {(aAv, v) | a ∈ A, v ∈ V (Z)} ,

and a set of edges

E (XA) = {(a (Ae) , e) | a ∈ A, e ∈ E(Z)} .

If V (XA) ∩ E (XA) ̸= ∅ then there exist a ∈ A, v ∈ V (Z), e ∈ E(Z) such that
(aAv, v) = (a (Ae) , e). So v = e. This implies that V (X) ∩ E(X) ̸= ∅. This
contradicts the assumption that X is a graph. For a ∈ A, e ∈ E(X), define
the following ends of the edge (a (Ae) ; e), o ((a (Ae) , e)) =

(
a
(
Ao(e)

)
, o(e)

)
,

t ((a (Ae) , e)) =
(
a
(
At(e)

)
, t(e)

)
, and ((a (Ae) , e)) = (aAē, ē). It is clear that

o
(
(a (Ae) , e)

)
= o ((aAē, ē)) =

(
aAo(ē), o(ē)

)
=

(
aAt(e), t(e)

)
= t ((a (Ae) , e)),

t
(
(a (Ae) , e)

)
= t ((aAē, ē)) =

(
aAt(ē), t(ē)

)
=

(
aAo(e), O(e)

)
= o((a(Ae), e)),

and (a (Ae) , e) = (a (Aē) , ē) = (a (Aē) , ē) = (a(Ae), e). This shows that

XA = {(aA, v), (a (Ae) , e) | a ∈ A, v ∈ V (X), e ∈ E(Z)} ,

forms a graph where

V (XA) = {(aA, v) | a ∈ A, v ∈ V (Z)},

and

E (XA) = {(a (Ae) , e) | a ∈ A, e ∈ E(Z)} .
Now for f, g ∈ A, v ∈ V (Z), e ∈ E(Z) define f (gAv, v) = (fgAv, v) and
f (g (Ae) , e)) = (fg (Ae) , e)). Furthermore, for a ∈ A

f
(
(a (Ae) , e))

)
= f (a (Ae) , e) = (fa (Ae) , e) = f (a (Ae) , e).

This implies that A acts on XA. If f, a ∈ A, e ∈ E(Z) such that f (a (Ae) ; e) =

(a (Ae) ; e) = (aAē; ē) then e = ē. This contradicts the assumption that Z is a
tree. Thus, A acts on XA without inversions on XA. Now we show that XA is
connected. Let TA = {(Av, v) , (Ae; e) | v ∈ V (Z), e ∈ E(Z)}. It is clear that TA

is a subgraph of XA of set of vertices V (TA) = {(Av; v) | v ∈ V (Z)} and set of
edges E (TA) = {(Ae; e) | e ∈ E(Z)}.
Now we show that TA is a subtree of XA. Let α, β ∈ V (TA). We need to
find a reduced path in TA joining α and β. The structure of TA shows that
there exists two vertices u, v ∈ V (Z) such that α = (Av, v) and β = (Au, u).
Since Z is a tree, there exist a unique reduced path P = (e1, e2, . . . , en) in Z
joining u and v. So o (e1) = v, t (ei) = o (ei+1) , ei+1 ̸= el, i = 1, . . . , n − 1, and
t (en) = u. Let TP be the set TP = ((Ae1 , e1) , (Ae2 , e2) , . . . , (Aen , en)). Then TP

is a path in TA from α to β because o (Ae1 , e1) =
(
Ao(e1), o (e1)

)
= (Au, v) = α,

t ((Aen , en)) =
(
At(en), t (en)

)
= (Av, u) = β, t (Aei , ei) =

(
At(ei), t (ei)

)
=(

Ao(ei+1), o (ei+1)
)
= o

((
Aei+1 , ei+1

))
.

Now we show that TP is reduced. For, if for some i we have
(
Aei+1 , ei+1

)
=
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(Ael , el), then
(
Aei+1

, ei+1

)
= (Ael , el). So ei+1 = el. This contradicts above

that P is a reduced path. So TA is a subtree of XA. Since for each a ∈ A, v ∈
V (Z), we have (aAv, v) = a (Av, v), this shows that TA is a tree of representative
for the action of A on XA.

If a ∈ A and e ∈ E(Z), then (a (Ae) ; e) ∈ E (XA), (a (Ae) ; e) = a (Ae; e),
o (Ae; e) =

(
Ao(e); o(e)

)
∈ TA and t (Ae; e) = (At(e); t(e)) ∈ TA. This shows

that the transversal YA = TA is a transversal of the action of A on XA on which
(TA, TA) is a fundamental domain of the action of A on XA.

For any vertex (aAv, v) ∈ V (XA) we have (aAv, v) = a ((Av, v)) and (Av, v) ∈
V (TA). This implies that (aAv, v)

∗
= (Av, v) is the representative of the vertex

(aAv, v).
For any edge (Ae, e) ∈ YA = TA, t ((Ae, e)) = (At(e)) , t(e)) ∈ TA on which

(t ((Ae, e)))
∗
=, t ((Ae, e)). This implies that the value [(Ae, e)] of the edge (Ae, e)

is [(Ae, e)] = 1, the identity element of A. For any vertex (aAv, v) ∈ V (XA)
and any element g ∈ A, if g ((aAv, v)) = (aAv, v), then g ∈ aAvaa

−1. This
implies that the stabilizer of (aA, v) is A(aAv,v) = aAva

−1, a conjugate of Av. If

aAva
−1 = A, then Av = A. This contradicts the definition of A. Consequently,

the set of vertices of XA fixed by A is (XA)
A
= ∅.

Since A is generated by the set {Av | v ∈ V (Z)}, the steps (a)-(e) show that
A is generated by the set{
aAva

−1, 1 | v ∈ V (Z)
}
=

{
A(aAv,v), [(Ae, e)] | v ∈ V (X), e ∈ E(Z)

}
= ∆(YA) .

Then Theorem 2.1-(1) shows that XA is a connected graph. It remains to show
that XA is a tree.

From the structure of the fundamental domain (TA, TA) is a fundamental
domain of the action of A on XA obtained above shows that E0 (YA) = TA,
E1 (YA) = ∅, E2 (YA) = ∅. So the above steps show that the relations y ·
[y]−1Gy[y]·y−1 = Gy, x·Gx ·x−1Gx, x

2 = [x]2 of Theorem 3.1, do not exist and A
is a tree products of groups with amalgamation subgroup can be modified to be
of presentation A =

〈
A(Av,v)

∣∣rel (A(Av,v)

)
, A(Ae,e) = A(Aē,ē)

〉
= ⟨Av|Ae = Aē

〉
for all v ∈ V (X) and all e ∈ E(X). For the case above that YA = TA, Theorem
3.1 implies that XA forms a tree on which A acts without inversions. □

Remark 3.2. XA is called the standard tree of the tree products A of groups.

We have the summary of the concepts of section 2 applied to the action of the
tree products A = π∗ (Av; θe (Ae) = Aē, ) , v ∈ V (Z), e ∈ E(Z) on its standard
tree XA.

(i) XA = {(aA, v), (a (Ae) , e) | a ∈ A, v ∈ V (X), e ∈ E(Z)},
V (XA) = {(aA, v) | a ∈ A, v ∈ V (Z)}
and E (XA) = {(a (Ae) , e) | a ∈ A, e ∈ E(Z)}.

(ii) If a ∈ A, e ∈ E(X), and (a (Ae) ; e) ∈ E (XA), then the ends of the
edge (a (Ae) ; e) are o ((a (Ae) , e)) = ((a (Ao(e)) , o(e)) , t ((a (Ae) , e))) =

((a (At(e)) , t(e))), and (a (Ae) , e)) = (aAē, ē).



On The Fibers of The Tree Products of Groups with Amalgamation Subgroups 1245

(iii) If a ∈ A, v ∈ V (Z) and e ∈ E(X), then the stabilizer of the vertex
(aAv, v) is A(aAv,v) = aAvaa

−1, a conjugate of Av and the stabilizer of

the edge (a (Ae) , e) is A(aAe,e) = aAea
−1, a conjugate of Ae.

(iv) The orbit of the vertex (aA; v) is A((aA; v)) = (A/Av) × {v}, where
A/Av = {aA | a ∈ A} is the set of left cosets aAv = {ab | b ∈ Av} and
the orbit of the edge is is A((aAe; e)) = (A/Ae)× {e}.

(v) The quotient graph of the action of A on XA is
A/XA = {(A/Av)× {v}, (A/Ae)× {e} | v ∈ V (X), e ∈ E(X)} forms a
tree of set of vertices V (A/XA) = {(A/Av)× {v} | v ∈ V (X)}, and of
set of edges E (A/XA) = {(A/Ae)× {e} | e ∈ E(X)}, where

o ((A/Ae)× {e}) = (A/Ao(e))× {o(e)}, t ((A/Ae)× {e})
=

((
A/At(e)

)
× {t(e)}

)
.

and ((A/Ae)× {e}) = (A/Aē)× {ē}.
(vi) If P = (e1, e2, . . . , en) is called a path in Z, then

TP = ((Ae1,e1) , (Ae2 , e2) , . . . , (Aen , en)) is a path in XA. If P is reduced
then TP is reduced.

(vii) The set of vertices of XA fixed by A is the set (XA)
A
= ∅.

(viii) TA = {(Av, V ) , (Ae; e) | v ∈ V (Z), e ∈ E(Z} is a tree of representatives
for the action of A on XA. (aAv, v)

∗
= (Av, v) is the representative of

the vertex (aAv, v).
(ix) YA = TA is the transversal for the action of A on XA, and (TA, TA) is

the fundamental domain for the action of A on XA.
(x) The splitting edges of YA = TA are

1) E0 (YA) = E (TA) = {(Ae; e) | e ∈ E(Z}.
2) E1 (YA) = ∅.
3) E2 (YA) = ∅.

(xi) [(Ae, e)] = 1 is the value of the edge (Ae, e) and + (Ae, e) = (Ae, e) is
the sign of the edge (Ae, e).

(xii) If a ∈ A, and (Ae, e) ∈ E (XA), then a⊕ (Ae, e) = (aAe, (Ae, e)).
(xiii) (XA) ∗ = {(aAe, (Ae, e)) | a ∈ A, e ∈ E(Z)} is the star of XA.

(xiv) The inverse of the edge a ⊕ (Ae, e) = (aA, (Ae, e)) is (aAe, (Ae, e)) =

a⊕ (Ae, e) = a [(Ae, e)]⊕ (Ae, e) = a1 (Aē, ē) = (aAē, ē) = a⊕ (Aē, ē).

4. The fibers of tree products of groups with amalgamation
subgroups

The following concept is needed for the rest of this section.
Let G be a group, H ≤ G and let H act on a graph X. For each g ∈ G and each
x ∈ X let g ⊗H x be the set g ⊗H X =

{(
gh, h−1(x)

)
| h ∈ H

}
. In ([7], p.78) it

is defined G⊗H X to be the set G⊗H X = {g ⊗H x | g ∈ G, x ∈ X}.
Then the following hold. Let g ∈ G, x ∈ X,A ⊆ G, and Y ⊆ X. Then

(i) g ⊗H Y = {g ⊗H y | y ∈ Y },
(ii) g ⊗H X = {g ⊗H X | X ∈ X},
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(iii) A⊗H X = {a⊗H X | a ∈ A},
(iv) A⊗H Y = {a⊗H y | a ∈ A, y ∈ Y },
(v) G⊗H Y = {g ⊗H y | g ∈ G, y ∈ Y },
(vi) G⊗H X = {g ⊗H X | g ∈ G,X ∈ X}.

The following lemma is needed for the proofs of this section.

Lemma 4.1. Let K be a group acting on a graph Γ and e ∈ E(Γ) be an edge
of Γ such that the stabilizer Ko(e) of the initial of e acts on a tree Ω and Ko(e)

fixes no vertex of Ω.
That is, (Ω)Ko(e) = ∅. If Ke is finite and contains no inverter elements of

Ω, that is, k(p) ̸= p̄ for all k ∈ K and all edges p ∈ E(Ω), then there exists a
vertex denoted we such that we ∈ V (Ω)Ke ≤

(
Ko(e)

)
we

, where
(
Ko(e)

)
we

is the

stabilizer of the vertex we under the action of Ko(e) on Ω. we is called the vertex
of e in Ω.

Proof. See Corollary 3.5 of [1]. □

Theorem 4.2. Let A = π∗ (Av;Ae = Aē, ) , v ∈ V (Z), e ∈ E(Z) be a tree prod-
uct of groups with amalgamation subgroups of a tree Z such that each factor group
Av, v ∈ V (Z) acts on a tree Xv such that Xu ∩Xv = ∅ for all u ∈ V (Z), u ̸= v.
Furthermore, assume that the amalgamation subgroups Ae, e ∈ E(Z) are finite
and containing no inversions of the tree Xo(e). Then for e ∈ E(Z), w(Ae,e) ∈
V (Xo(e)) is the vertex of the edge (Ae, e) obtained in Lemma 4.1, and w

(Ae,e)
=

w(Ae,e) ∈ V
(
Xt(e)

)
.

i. The set

(̃XA) =

{
a⊗Av kv, a⊗Av mv, (aAe; (Ae, e)) | a ∈ A, v ∈ V (Z)

e ∈ E(Z), kv ∈ V (Xv) ,mv ∈ E (XV )

}
forms a tree called the fiber tree for the action of A on XA of set of

vertices V
(
(̃XA)

)
= {a⊗Av

kv | a ∈ A, v ∈ V (Z), kv ∈ V (Xv)}, and of

the set of edges

E
(
(̃XA)

)
=

{
a⊗Av

mv, (aAAe, (Ae, e) , (Ae, e)) | a ∈ A, e ∈ E(Z),

mv ∈ E (Xv)

}
.

The initials, the terminals, and the inverses of the edges of E
(
(̃XA)

)
are as follows.
(i) If α = a ⊗Av

mv, a ∈ A, e ∈ E(Z),mv ∈ E (Xv), then o(α) =
a⊗Av

o (mv) , t(α) = a⊗Av
t (mv), and, ᾱ = a⊗Av

mv.



On The Fibers of The Tree Products of Groups with Amalgamation Subgroups 1247

(ii) If α ∈ (XA)
∗
, then α = aAe ⊕ (Ae, e) = (aAe, (Ae, e)) , o(α) =

a⊗Ao(e)
w(Ae,e), t(α) = a⊗At(e)

w(Aē,e), and ᾱ = a [Ae, e]⊕(Ae, e) =

a1⊕ (Aē, ē) = a⊕ (Aē, ē) = (aAē, (Aē, ē)).

ii. A acts on (̃XA). If v ∈ V (Z), Av acts on Xv with inversions, then A

acts on (̃XA) with inversions.

Proof. (1) A acts on it is standard tree XA of fundamental domain (TA, TA)
where TA = {(Av, V ) , (Ae, e) | v ∈ V (Z), e ∈ E(Z)}. By Theorem 6.1-
(1) of [1], the set

(̃XA) = ∪v∈V (Z) [A⊗Av
Xv] ∪ (XA)

∗

=

{
a⊗Av kv, a⊗Av mv, (aAAe, (Ae, e)) | a ∈ A, v ∈ V (Z),

e ∈ E(Z), kv ∈ V (XV ) ,mv ∈ (Xv)

}
,

V
(
(̃XA)

)
= Uv∈V (Z) [A⊗Av

V (Xv)]

= {a⊗AV
kv | a ∈ A, v ∈ V (Z), kv ∈ V (Xv)} ,

and,

E
(
(̃XA)

)
= Uv∈V (Z) [A⊗Av E (Xv)] ∪ (XA)

∗

= {a⊗Av
mv, (aA;Ae (Ae, e)) | a ∈ A, e ∈ E(Z),mv ∈ E (Xv)} .

Let α ∈ E
(
(̃XA)

)
. If α = a ⊗Av mv, a ∈ A, e ∈ E(Z), mv ∈ E (Xv),

then o(α) = o (a⊗Av mv) = a⊗Av o (mv), t(α) = t (a⊗Av mv) = a⊗Av

t (mv), and ᾱ = a⊗Av mv = a ⊗Av mv. If α ∈ (XA)
∗
, then α = a ⊕

(Ae, (Ae, e)) = (aAe; (Ae, e)), [(Ae, e)] = 1, the value of the edge (Ae; e).
This implies that o(α) = o ((aAAe; (Ae, e))) = a ⊗Ao(e)

w(Ae,e), t(α) =

t ((aAAe, (Ae, e))) = a
[
(aAAe; (Ae, e)]⊗At(e)

w(Ae,e) = a⊗At(e)
w(Ae,e)

]
and ᾱ = (aAe, e) = (aAē, ē).

(2) Theorem 6.1-(1) of [1] shows that if g, a ∈ A, v ∈ V (Z), e ∈ E(Z),
kv ∈ V (Xv), mv ∈ E (Xv) then it is clear that the rules g (a⊗Av

kv) =
ga⊗Av

kv, g (a⊗Av
mv) = ga⊗Av

mv, and
g (a⊕ (Ae, (Ae, e))) = g ((acA, e, (Ae, e))) = (gaAe, (Ae, e)) define an

action of A on (̃XA). If v ∈ V (Z), Av acts on Xv with inversions,
then there exists an element g ∈ Av and an edge e ∈ E (Xv) such that
g(e) = ē. Then 1⊗Av

e = 1 ⊗Av
ē = 1 ⊗Av

g(e) = g (1⊗Av
e). Thus, g

maps the edge 1⊗Av e into its inverse 1⊗Av e = 1⊗Av ē. Consequently,

the action of A on (̃XA) is with inversions.
□

In the next corollary and proposition A,Xv, and Ae will be as in Theorem
4.2.
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Corollary 4.3. For a ∈ A, v ∈ V (Z), e ∈ E(Z), k ∈ V (Xv) ,m ∈ E (Xv), we
have

(i) The stabilizer of the vertex a⊗Avk is Aa⊗Avk = a (Av)k a
−1, a conjugate

of Av, where (Av)k is the stabilizer of the vertex k under the action of
Av on Xv.

(ii) Aa⊗Avm
= a (Av)m a−1.

(iii) A(aAe;e) = aAea
−1.

(iv) If the stabilizer of every element of Xv under the action of Av on Xv is

finite, then the stabilizer of every element of (̃XA) under the action of

A on (̃XA) is finite.
(v) The orbit of the element a ⊗Av k is A (a⊗Av k) = A ⊗Av Av(k) =

{x⊗Av
y | x ∈ A, y ∈ Av(k)}, where Av(k) is the orbit of the vertex k

under the action of Av on Xv.
(vi) A (a⊗Av

m) = A⊗Av
Av(m).

(vii) A ((aAe, e)) = (A/Ae) × {e}, where A/Ae = {xA | x ∈ A} is the set of
left cosets of Ae in A, xAAe = {xb | b ∈ Ae}.

Corollary 4.4.

A/(̃XA) =

{
A⊗Av

Av(k), A⊗Av
Av(m), (A/Ae)

× {e} | v ∈ V (Z), e ∈ E(Z), k ∈ V (Xv)m ∈ E (Xv)

}
.

is the quotient graph for the action of A on (̃XA) · A/(̃XA) is connected, and,

the set of vertices is V
(
A/(̃XA)

)
= {A⊗Av

Av(k) | v ∈ V (Z), k ∈ V (Xv)} and

the set of edges

E
(
A/(̃XA)

)
=

{
A⊗Av

Av(m), (A/Ae)× {e} | v ∈ V (Z), e ∈ E(Z),

m ∈ E (Xv)

}
.

The initials, the terminals, and the inverses of the edges of A(̃XA) are as fol-
lows. o (A⊗Av

Av(m)) = A⊗Av
Av(o(m)), t (A⊗Av

Av(m)) = A⊗Av
Av(t(m)),

A⊗Av Av(m) = A⊗Av Av(m̄), o ((A/Ae)× {e}) = A⊗Ao(e)
Av(o(e)),

t ((A/Ae)× {e}) = A⊗At(e)
Av(t(e)), and, (A/Ae)× {e} = (A/Aē)× {ē}.

5. Applications

In this section we apply Theorem 4.1 to the cases where the tree Xv = {yv}
consists of a single vertex yv and to the case where the factor groups are tree
products of groups of amalgamation subgroups as follow.
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Proposition 5.1. Let A = π∗ (Av;Ae = Aē, ), v ∈ V (Z), e ∈ E(Z) be a tree
product of groups with amalgamation subgroups such that the factor group Av

acts on a tree Xv = {yv} of one vertex yv and no edges. Then

(i) V (Xv) = {yv} , E (Xv) = ∅, and the vertex of the edge e ∈ E(Z) is
w(Ae,e) = yo(e) and w(Aē,ẽ) ∈= yt(e).

(ii) For a ∈ A, v ∈ V (Z), a⊗Av
yv = aAv ×{yv}, where aAv is the left coset

aAv = {ap | p ∈ Av}.
(iii) The fiber (̃XA) is a tree of set of vertices

V
(
(̃XA)

)
= Uv∈V (Z) [(A/Av)× {yv}] = {(A/Av)× {yv} | v ∈ V (Z)}

and the set of edges E
(
(̃XA)

)
= {(aAe; e) | a ∈ A, e ∈ E(X)}. The

initials, the terminals, and the inverses of the edges of E
(
(̃XA)

)
are as

follows
α = (aA, e), a ∈ A, e ∈ E(Z), o(α) = aAAo(e) ×

{
yo(e)

}
, t(α) =

aAt(e) ×
{
yt(e)

}
, and ᾱ = (aAē, ē).

(iv) V
(
(̃XA)

)
= {a⊗Av

yv | a ∈ A, v ∈ V (Z)}
= {aA× {yv} | a ∈ A, v ∈ V (Z)} = Uv∈V (Z) [(A/Av)× {yv}] ,
E
(
(̃XA)

)
= {(aAe; e) | a ∈ A, e ∈ E(Z)}.

(v) The initials, the terminals, and the inverses of the edges of E
(
(̃XA)

)
are as follows.

o((aAe; e)) = aAo(e) ×
{
yo(e)

}
, t ((aAe; e)) = aAt(e) ×

{
yt(e)

}
, and

(aAe, e) = (aAē, ē).

Proof. First we remind the readers that the amalgamated subgroups Ae, e ∈
E(Z) need not to be finite or containing no invertors because Xo(e) =

{
yo(e)

}
,

a single vertex on which the stabilizer Ayo(e)
= Ao(e).

(i) For a ∈ A, v ∈ V (Z), The action of Av on {yv} shows that a⊗Av
yv =

aAv × {yv}, where aAv is a left coset of Av by a.
(ii) By the definition of ⊗Av

,

a⊗Av
yv =

{(
ah, h−1 (yv)

)
| h ∈ Av

}
= {(ah, yv | h ∈ Av} = aAv × {yv}

because Av acts on {yv} so that b (yv) = yv for all b ∈ Av.

(iii) (̃XA) is a tree of set of vertices V
(
(̃XA)

)
= Uv∈V (Z) [(A/Av)× {yv}],

{(A/Av)× {yv} | v ∈ V (Z)} and a set of edges

E
(
(̃XA)

)
= {(aAe; e) | a ∈ A, e ∈ E(X)} .

The initials, the terminals, and the inverses of the edges of E
(
(̃XA)

)
are as follows.
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α = (aA; e), a ∈ A, e ∈ E(Z), o(α) = aAo(e)×
{
yo(e)

}
, t(α) = aAt(e)×{

yt(e)
}
, and ᾱ = (aAē, ē).

(iv)

V
(
(̃XA)

)
= {a⊗Av

yv | a ∈ A, v ∈ V (Z)}

= {aAv × {yv} | a ∈ A, v ∈ V (Z)} = Uv∈V (Z) [(A/Av)× {yv}] ,

E
(
(̃XA)

)
= {a⊗Av E ({yv}) | a ∈ A, v ∈ V (Z)} ∪ (XA)

∗

= {a⊗Av ∅) | a ∈ A, v ∈ V (Z)} ∪ {(aAe; e) | a ∈ A, e ∈ E(Z)}
= ∅ ∪ {(aAe; e) | a ∈ A, e ∈ E(Z)}
= {(aAe; e) | a ∈ A, e ∈ E(Z)} .

(v) The initials, the terminals, and the inverses of the edges of E
(
(̃XA)

)
are as follows. o((aA; e)) = a ⊗Ao(e)

We = a ⊗Ao(e)
yo(e) = aAAo(e) ×{

yo(e)
}
, t ((aAe; e)) = a ⊗At(e)

wē = aAt(e) ×
{
yt(e)

}
, and (aAe, e) =

(aAē, ē).

□

Corollary 5.2. i. A defines an action of A on (̃XA).
ii. The stabilizer of the vertex a⊗Av

yv is Aa⊗Avyv
= aAva

−1, a conjugate
of Av.

iii. The stabilizer of the edge (aAe; e) is A(aAe;e) = aAea−1.

Proof. i. If g, a ∈ A, v ∈ V (Z), e ∈ E(Z), then it is clear that the rules
g (a⊗Av yv) = ga ⊗Av yv, and g ((aAe, e)) = (gaAe, e) define an action

of A on the fiber tree (̃XA).
ii. It is clear that stabilizer of the vertex a⊗Av yv is Aa⊗Avyv = aAva

−1, a
conjugate of Av.

iii. The same, the stabilizer of the edge (aAe; e) is A(aAe;e) = aAea
−1, a

conjugate of Ae.
□

Corollary 5.3. (i) The orbit of the vertex a ⊗Av
yv is A (a⊗Av

yv) =
(A/Av)× {yv}.

(ii) The orbit of the edge (aAe, e) is A ((aAe, e)) = (A/Ae)× {e}.

Proof. (i) The orbit of the vertex a⊗Av
yv is A (a⊗Av

yv) = A⊗Av
Av (yv) =

A⊗Av
{yv} = (A/Av)× {yv}.

(ii) Similarly, the orbit of the edge (aAe, e) is A(aA, e) = (A/Ae)× {e}.
□

Corollary 5.4. The quotient graph for the action of A on A/(̃XA) is the con-

nected graph of set of vertices V
(
A/(̃XA)

)
= {(A/Av)× {yv} | v ∈ V (Z)}, and
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a set of edges E
(
A/(̃XA)

)
= {(A/Ae)× {e} | e ∈ E(Z)}. The initials, the ter-

minals, and the inverses of the edges of E
(
(̃XA)

)
are: o ((A/Ae)× {e}) =(

A/Ao(e)

)
×
{
yo(e)

}
, t ((A/Ae)× {e}) =

(
A/At(e)

)
×

{
yt(e)

}
, and,

(A/Ae)× {e} = (A/Aē)× {ē}.

Proof. The quotient graph for the action of A on A/(̃XA) is

A/(̃XA) = {(A/Av)× {yv} , (A/Ae)× {e} | v ∈ V (Z), e ∈ E(Z)} .

A/(̃XA) is connected, V
(
A/(̃XA)

)
= {(A/Av)× {yv} | v ∈ V (Z)}, a

E
(
A/(̃XA)

)
= {(A/Ae)× {e} | e ∈ E(Z)}.

o ((A/Ae)× {e}) =
(
A/Ao(e)

)
×
{
yo(e)

}
, t ((A/Ae)× {e}) =

(
A/At(e)

)
×{yt(e)},

and (A/Ae)× {e} = (A/Aē)× {ē}. □

Proposition 5.5. Let A = π∗ (Av;Ae = Aē, ), v ∈ V (Z), e ∈ E(Z) be tree
product of groups with amalgamation subgroups of a tree Z. For each vertex
v ∈ V (Z) let Zv be a tree such that Zv ̸= Z and Zu ∩ Zv = ∅ for every vertex

u ∈ V (Z), u ̸= v, and let the vertex group Av = π∗
(
(Av)u ; (Av)p = (Av)p̄

)
,

u ∈ V (Zv), p ∈ E (Zv) be a tree product of groups with amalgamation subgroups
of a tree Zv such that the amalgamation subgroups of A and Ax are finite and
contain no invertor elements for all vertices x ∈ V (Z), and Xv = XAv

be the
standard tree of Av. Then

(i) w(Ae,e) =
(
Ao(e), O(e)

)
is vertex of the edge (Ae, e) in the tree Xo(e) and

w
(Ae,e)

= w(Aē,e) =
(
At(e), (e)

)
is vertex of the edge (aAē, ē) in the tree

Xt(e).
(ii) Xp ∩Xq = ∅ for all vertices p, q ∈ V (Z), p ̸= q.

(iii) XAv =
{
(g (Av)u , u) ,

(
g (Av)q , q

)
| g ∈ Av, u ∈ V (Zv) , q ∈ E (Zv)

}
.

(iv) The set SA =
[
Uv∈V (Z) (A⊗Av

XAv
)
]
U (XA) * forms a tree.

Proof. The assumptions of the proposition coincides with assumptions of Theo-
rem 4.2

(i) A(Ae,e) = Ae is the stabilizer of the edge (Ae, e) , A(Ao(e),o(e)) = Ao(e) is

the stabilizer of the vertex Xt(e).
(ii) The assumption that Zv ̸= Z and Zu ∩Zv = ∅, u ∈ V (Z), u ̸= v implies

that Xu ∩Xv = ∅.
(iii) By the definition of the standard tree of Av,

XAv
=

{
(g (Av)u , u) ,

(
g (Av)q , q

)
| g ∈ Av, u ∈ V (Zv) , q ∈ E (Zv)

}
,

where the set of vertices is
V (XAv ) = {(g (Av)u , u) | g ∈ Av, u ∈ V (Zv)}, and the set of edges is

E (XAv ) =
{(

g (Av)q , q
)
| g ∈ Av, q ∈ E (Zv)

}
, and Av acts on XAv .



1252 A. Al-Husban, D. Al-Sharoa, R. Saadeh, A. Qazza and R. Mahmood

(iv) By the definition of ⊗ we have

Uv∈V (Z) (A⊗Av
XAv

)

=
[
Uv∈V (Z) (A⊗Av

V (XAv
))
]
∪
[
Uv∈V (Z) (A⊗Av

E (XAv
))
]

=

{
a⊗Av

(g (Av)u, u) | a, g ∈ Av, u ∈ V (Zv)

}
∪{

a⊗Av

(
g (Av)q , q

)
| a, g ∈ Av, q ∈ E (Zv)

}
=

{
a⊗Av (g (Av)u , u) , a⊗Av

(
g (Av)q , q

)
| a, g ∈ Av,

u ∈ V (Zv) , q ∈ E (Zv)

}
.

From above we have (XA)
∗
= {(aAe, (Ae, e)) | a ∈ A, e ∈ E(Z)}. Then

SA =

{
a⊗Av

(g (Av)u , u) , a⊗Av

(
g (Av)q , q

)
, (aAe, (Ae, e)) | a, g ∈ Av,

u ∈ V (Zv) , q ∈ E (Zv)

}
.

So V (SA) = {a⊗Av
(g (Av)u , u) | a, g ∈ Av, u ∈ V (Zv)} and

E (SA) =

{
a⊗Av

(
g (Av)q , q

)
, (aAAe, (Ae, e)) | a, g ∈ Av, u ∈ V (Zv) ,

q ∈ E (Zv)

}
.

By Theorem 4.2, SA forms a tree. The initials, the terminals, and inverses of
the edges of SA are

o
(
a⊗Av

(
g (Av)q , q

))
= a⊗Av

o (g (Av)u , q) = a⊗Av

(
g (Av)o(q) , q

)
,

t
(
a⊗Av

(
g (Av)q , q

))
= a⊗Av t ((g (Av)u , q)) = a⊗Av (g (Av) t(q), q) ,

and

a⊗Av

(
g (Av)q , q

)
= a⊗Av

(
g (Av)q̄ , q̄

)
,

o (aAe, (Ae, e)) = a⊗Ao(e)
wAe,e = a⊗Ao(e)

(
Ao(e), o(e)

)
,

t (aAe, (Ae, e)) = a [aAe; (Ae, e)]⊗At(e)
w(Ae,e)

= a1⊗At(e)
w(Aē,e)a⊗At(e)

w(Aē,e)

= a⊗At(e)

(
At(e), t(e)

)
and (aAe) = (aAē, (Aē, ē)). □

Corollary 5.6. i. A defines an action of A on SA.
ii. The stabilizer of the vertex a⊗Av (g (Av)u , u) is Aa ⊗Av (g (Av)u, u) =

a (Av)u a
−1, a conjugate of (Av)u.
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iii. The stabilizer of the edge (aA, e, (Ae, e)) is A(aAe,(Ae,e)) = aAea
−1, a

conjugate of Ae.

Proof. i. Let h ∈ A, a ⊗Av
(g (Av)u , u be a vertex of SA and a ⊗Av(

g (Av)q , q
)
, (aAe, (Ae, e)) be edges of SA. Then it is clear that the

rules
h [a⊗Av

(g (Av)u , u)] = ha⊗Av
(g (Av)u , u),

h
[
a⊗Av

(
g (Av)q , q

)]
= ha⊗Av

(
g (Av)q , q

)
,

and h [(aAe, (Ae, e))] = (haAe, (Ae, e)) define an action of A on SA.
ii. If h ∈ A such that ha ⊗Av

(g (Av)u , u) = a ⊗Av
(g (Av)u , u) and the

definition of ⊗Av
implies that there exists an element b ∈ Av such that

ha = ab and b (g (Av)u = (g (Av)u . So h = aba−1 ∈ a (Av)u a
−1, a

conjugate of (Av)u.
iii. Similarly, we can show that the stabilizer of the edge (aAe, (Ae, e)) is

aAea
−1, a conjugate of Ae.

□

Corollary 5.7. (i) The orbit of the vertex a⊗Av (g (Av)u , u) is

A

(
a⊗Av

(
g (Av)u , u

))
= A⊗Av

(
g (Av)u , u

)
=

{
xa⊗Av

(
g (Av)u , u

)
| x ∈ A

}
.

(ii) The orbit of the edge (aAe, (Ae, e)) is

A

(
aAe, (Ae, e)

)
= (A/Ae)× {(Ae, e)} .

Proof. (i) A

(
a ⊗Av

(
g (Av)u , u

))
=

{
xa ⊗Av

(
g (Av)u , u

)
| x ∈ A

}
=

A⊗Av

(
g (Av)u , u

)
.

(ii) A

(
aA, (Ae, e)

)

=

{
(gaAe, (Ae, e)) | g ∈ A

}
= {(xAe, (Ae, e)) | x ∈ A}

= (A/Ae)× {(Ae, e)} .

□
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Corollary 5.8. The quotient graph A/SA of the action of A on SA has the
structure

A/SA =

{
A⊗Av

(a (Av)u , u) , (A/Ae)×
{
(Ae, e) | a ∈ A,

v ∈ V (Z), u ∈ V (Zv) , e ∈ E(Z)
}}

.

where the set of vertices of A/SA is

V (A/SA) = {A⊗Av (a (Av)u , u) | a ∈ A, v ∈ V (Z), u ∈ V (Zv)} ,
and the set of edges of A/SA is

E (A/SA) = {(A/Ae)× {(Ae, e)} | e ∈ E(Z)} .

6. Conclusion

In this paper, we have investigated the structures of fibers for the action of
tree products of groups with amalgamation subgroups on trees. We constructed
the standard tree where such a group acts without inversions and determined
the quotient of this action.

Furthermore, we showed that when the amalgamation subgroups are finite
and the factor groups act on disjoint trees, there exists a fiber tree where the
group acts without inversions. We described the structure of this fiber tree and
determined the corresponding factors of the action.

When each factor group is itself a tree product with amalgamation subgroups,
we constructed a new fiber tree and described its structure. We derived formulas
for the vertices, edges, initials, terminals and inverses in these fiber trees.

Several corollaries were proved concerning the orbits, stabilizers and quotients
of the actions on the fiber trees. We also applied the results to some specific
cases when the factor trees consist of single vertices or when the factors are tree
products.

The fibers of tree products of groups with amalgamation subgroups generalize
the fibers of free products of groups with amalgamation subgroups. The results
of this paper provide a framework for understanding the interactions between
algebraic structures of tree products of groups and the geometry of tree actions.
Future work will involve exploring additional properties and applications of these
fiber trees.
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