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Abstract. In this paper, we defined some new classes of analytic functions

in conic domains. We investigate some important properties such as nec-

essary and sufficient conditions, coefficient estimates, convolution results,
linear combination, weighted mean, arithmetic mean, radii of starlikeness

and distortion for functions in these classes. It is important to mentioned

that our results are generalization of number of existing results in the lit-
erature.
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1. Introduction

The theory of the q-calculus operators are used in many areas of science such
as fractional q-calculus, optimal control, q-difference, and q-integral equations.
This theory is many applications in geometric function theory of complex anal-
ysis as is discuss by Srivastava [41] in his recent survey-cum-expository review
article.

In 1908, Jackson [19] defined the q-analogs of the ordinary derivative and
integral operators, and presented some of their applications. More recently, Is-
mail et al. [21] gave the idea of a q-extension of the familiar class of starlike
functions in U. Many researchers have since studied the q-calculus in the con-
text of Geometric Functions Theory. For example, Kanas and Răducanu [24]
introduced the q-analogue of the Ruscheweyh derivative operator and Zang et
al. in [47] studied q-starlike functions related with a generalized conic domain
Ωk,α. By using the concept of convolution, Srivastava et al. [45] introduced the
q-Noor integral operator and studied some of its applications. Ahmad et al. [2]
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introduced a family of meromorphic multivalent functions associated with the
domain of lemniscate of Bernoulli in q-analogue. Some of latest innovations in
the field can be seen in the work of Arif et al. [14] in which they investigated the
q-generalization of Harmonic starlike functions. While Srivastava in [39, 42, 46]
investigated some general families in q-analogue related to Janowski functions
and obtained some interesting results. Ramachandran et al.[40] obtained coeffi-
cient bounds for some subclasses of fractional q-derivative multivalent functions
together with generalized Ruscheweyh derivative. Frasin et al. [15] derived a
subordination result and integral mean for certain class of analytic functions de-
fined by means of a fractional q-differintegral operator. Furthermore, Shamsan
et al. [36] derived some convolution conditions for q-Sakaguchi-Janowski type
functions, (see also, [3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 37, 43]).

In most of the cases it is much harder to use a random domain, so Riemann
mapping theorem allows us to replace it with open unit disk defined as:

U = {ξ ∈ C : |ξ| < 1} .

A function ĝ is analytic at a point ξ0 if ĝ
′
(ξ) exists at ξ0 as well as in some

neighborhood of ξ0. An analytic function ĝ is univalent in U, if ĝ(ξ1) = ĝ(ξ2)
then ξ1 = ξ2, for all ξ1, ξ2 ∈ U. A function ĝ(ξ) is said to be the class A if it has
a Taylor series of the form

ĝ(ξ) = ξ +

∞∑
t=2

atξ
t, ξ ∈ U, (1.1)

A collection of functions of the form (1.1), which are analytic and univalent in
U are placed in the class S. An analytic function p (ξ) having positive real part
that is, Re {p (ξ)} > 0 and p (0) = 1 is placed in class P, or equivalently

p ∈ P : p (ξ) = 1 +

∞∑
t=1

atξ
t ⇐⇒ Re {p (ξ)} > 0, ξ ∈ U. (1.2)

The class of normalized convex functions is given by

C =

ĝ : ĝ ∈ S; Re


(
ξĝ

′
(ξ)
)′

ĝ(ξ)

 > 0, ξ ∈ U

 .

Similarly, the class of normalized starlike functions is defined as:

S∗ =

{
ĝ : ĝ ∈ S; Re

(
ξĝ

′
(ξ)

ĝ′(ξ)

)
> 0, ξ ∈ U

}
,

for details, see [11]. If a function ĝ(ξ) ∈ QC, the class of quasi-convex function

if and only if there exist ĥ(ξ) ∈ C such that Re

(
(ξĝ

′
(ξ))

′

ĥ′ (ξ)

)
> 0. In 1952, Kaplan

[26] introduced the class KC of close-to-convex function. A function is of the
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form (1.2) is in KC if and only if there exists ĥ(ξ) ∈ S∗ such that Re

(
ξĝ

′
(ξ)

ĥ(ξ)

)
> 0.

Let ĝ(ξ) is of the form (1.1) and ĥ(ξ) is of the form

ĥ(ξ) = ξ +

∞∑
t=2

btξ
t, ξ ∈ U. (1.3)

Then the Hadamard product(convolution) of ĝ and ĥ is defined as:(
ĝ ∗ ĥ

)
(ξ) = ξ +

∞∑
t=2

atbtξ
t =

(
ĥ ∗ ĝ

)
(ξ). (1.4)

The q-derivative of a function ĝ belonging to A defined as:

Dq ĝ(ξ) =
ĝ(qξ)− ĝ(ξ)

ξ(q − 1)
for ξ ̸= 0, (1.5)

for details, see [19], where q ∈ (0, 1) and ξ ∈ U. For ξ = 0, (1.5) can be written as

ĝ
′
(0) provided that the derivative exists. By using (1.1) and (1.5) the Maclaurin’s

series representation of Dq ĝ is given by

Dq ĝ(ξ) = 1 +

∞∑
t=0

[t, q] atξ
t−1.N (1.6)

It can be noted from (1.5) that

lim
q→1−

(Dq ĝ(ξ)) = lim
q→1−

(
ĝ(qξ)− ĝ(ξ)

ξ(q − 1)

)
= ĝ

′
(ξ), where [t, q] =

1− qt

1− q
.

For any non negative integer t see [13] the q-number shift factorial is given by

[t, q]! =

{
1, t = 0

[1, q] [2, q] · · · [t, q] , t ∈ N
, (1.7)

For y > 0, the q-generalized Pochammar symbol is defined as:

[y, q]t =

{
1, t = 0

[y, q] [y + 1, q] · · · [y + t− 1, q] , t ∈ N
. (1.8)

The study of operators plays an important role in the geometric function theory.
Many differential and integral operators can be written in terms of convolution
of certain analytic functions. For µ > −1, we defined a function F−1

q,1+µ(ξ) such
that

Fq,1+µ(ξ) ∗ F−1
q,1+µ(ξ) = ξDq ĝ(ξ), (1.9)

where

Fq,1+µ(ξ) = ξ +

∞∑
t=2

(
[1 + µ, q]t−1

[t− 1, q]!
ξt
)
, for ξ ∈ U. (1.10)

In [13] q-analogue of Noor integral operator ℑµ
q : A → A is define as:

ℑµ
q ĝ(ξ) = ĝ(ξ) ∗ F−1

q,1+µ(ξ) = ξ +

∞∑
t=2

ψt−1atξ
t, (1.11)
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where

ψt−1 =
[t, q]!

[1 + µ, q]t−1

. (1.12)

From (1.9) It can be easily seen that

[1 + µ, q]ℑµ
q ĝ(ξ) = [µ, q]ℑµ+1

q ĝ(ξ) + qµξDq

(
ℑµ+1

q ĝ(ξ)
)
. (1.13)

It is worth mentioned that ℑ0
q ĝ(ξ) = ξDq ĝ(ξ), ℑ1

q ĝ(ξ) = ĝ(ξ) and

lim
q→1−

(
ℑµ

q ĝ(ξ)
)
= ξ +

∞∑
t=2

t!

(1 + µ)t−1

atξ
t. (1.14)

From (1.14), we can observe that by applying limit q → 1−, the operator defined
in (1.11) reduces to well known Noor integral operators see ([31, 32]).

Figure 1. u = l

√
(u− 1)

2
+ v2

In [22, 23], Kanas and Waniowska introduced the concept of a conic domain
Ξl for l ≥ 0 as:

Ξl =

{
u+ iv : u > l

√
v2 + (u− 1)

2

}
. (1.15)

This domain merely represent the right half plane for l = 0, a hyperbola for
0 < l < 1, parabola for l = 1 and ellipse for l > 1 as shown in Figure 1. The
extremal functions ϖl for this conic region Ξl is given by

ϖl (ξ) =



1+ξ
1−ξ l = 0,

1 +

{
2
π2

(
log

√
ξ+1

1−
√
ξ

)2}
l = 1,

1 + 2
1−l2 sinh

2
[(

2
π arccos l

) (
arctanh

√
ξ
)]

0 < l < 1,

1 + 1
l2−1 sin

[
π

2R(n)

∫ U(ξ)√
n

0

(
1√

1−n2y2
√
1−x2

)
dx

]
+ 1

l2−1 l > 1,

(1.16)
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where U (ξ) = ξ−
√
n

1−
√
nξ
, for all ξ ∈ U, 0 < l < 1 and l = cosh

[
πR

′
(n)

4R(n)

]
where R (n)

is Legendre’s complete elliptic integral of first kind and R
′
(n) is complementary

integral of R (n) for more details, see [22, 23, 1]. If we take ϖl (ξ) = 1+ δ (l) ξ+
δ1 (l) ξ

2 + · · · , then

δ (l) =


8(arccos l)2

π2(1−l2) 0 ≤ l < 1,
8
π2 l = 1,

π2

4
√
n(l2−1)(1+n)R2(n)

l > 1.

(1.17)

Let δ1 (l) = δ2 (l) δ (l) , where

δ2 (l) =


2+( 2

π arccos l)
2

3 0 ≤ l < 1,
2
3 l = 1,
4R2(n)(1+n2+6n)−π2

24(1+n)
√
nR2(n)

l > 1.

(1.18)

Motivated by the above cited work, we now define the following more gen-
eral class of analytic functions associated with conic domain with a convolution
operator.

Definition 1.1. [20] Let p be a analytic function with p(0) = 1. Then p ∈
P(λ,R) if and only if

p(ξ) ≺ λξ + 1

Rξ + 1
, where −1 ≤ R < λ ≤ 1. (1.19)

In [20] it was shown that p ∈ P(λ,R) if and only if there exists a function
p ∈ P such that

(1 + λ) p(ξ)− (λ− 1)

(1 +R) p(ξ)− (R− 1)
≺ λξ + 1

Rξ + 1
.

Definition 1.2. [29] A function ĝ ∈ A considered in the class k−STq(N,M) if
and only if

ℜ

 (ML1 − L2)
(

ξDq(ĝ(ξ))
ĝ(ξ)

)
− (NL1 − L2)

(ML1 + L2)
(

ξDq(ĝ(ξ))
ĝ(ξ)

)
− (NL1 + L2)

 (1.20)

> k

∣∣∣∣∣∣
(ML1 − L2)

(
ξDq(ĝ(ξ))

ĝ(ξ)

)
− (NL1 − L2)

(ML1 + L2)
(

ξDq(ĝ(ξ))
ĝ(ξ)

)
− (NL1 + L2)

− 1

∣∣∣∣∣∣ ,
where k ≥ 0, −1 ≤M < N ≤ 1, L1 = q + 1 and L2 = 3 − q. One can observe
that, for q → 1−, the class k − STq(N,M) reduced to well known class defined
in [33].
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Definition 1.3. Let ĝ(ξ) ∈ A . Then k − STq(µ,N,M) if and only if

ℜ

 (ML1 − L2)

(
ξDq(ℑµ

q ĝ(ξ))
ℑµ

q ĝ(ξ)

)
− (NL1 − L2)

(ML1 + L2)
(

ξDq(ℑµ
q ĝ(ξ))

ℑµ
q ĝ(ξ)

)
− (NL1 + L2)



> k

∣∣∣∣∣∣∣∣
(ML1 − L2)

(
ξDq(ℑµ

q ĝ(ξ))
ℑµ

q ĝ(ξ)

)
− (NL1 − L2)

(ML1 + L2)
(

ξDq(ℑµ
q ĝ(ξ))

ℑµ
q ĝ(ξ)

)
− (NL1 + L2)

− 1

∣∣∣∣∣∣∣∣ ,
where k ≥ 0, −1 ≤M < N ≤ 1, µ > −1, L1 = 1 + q and L2 = 3− q.

Definition 1.4. Let ĝ(ξ) ∈ A . Then k − UCVq(µ,N,M) if and only if

ℜ

 (ML1 − L2)

(
Dq{ξDq(ℑµ

q ĝ(ξ))}
Dq(ℑµ

q ĝ(ξ))

)
− (NL1 − L2)

(ML1 + L2)
(

Dq{ξDq(ℑµ
q ĝ(ξ))}

Dq(ℑµ
q ĝ(ξ))

)
− (NL1 + L2)



> k

∣∣∣∣∣∣∣∣
(ML1−L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1−L2)

(ML1+L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1+L2)

−1

∣∣∣∣∣∣∣∣ ,
where k ≥ 0, −1 ≤ O < N ≤ 1, µ > −1, L1 = 1 + q and L2 = 3 − q. One can
easily verify this

ĝ ∈ k − UCVq(µ,N,M) ⇐⇒ ξDq

(
ℑµ

q ĝ
)
∈ k − STq(µ,N,M). (1.21)

It is noted that, for µ = 1, the function class k − UCVq(µ,N,M) reduced to
well known class k − UCVq(N,M) introduced by Naeem et al. in [30] and for
µ = 1 along with q → 1−, the class k − UCVq(µ,N,M) bring to well-known
class interpreted in [33].

In this paper, we will presume that µ > −1, k ≥ 0, −1 ≤M < N ≤ 1, L1 =
1 + q and L2 = 3− q, if not mentioned.

To establish our main results, we need the following lemma.

Lemma 1.5. [29] A function ĝ ∈ A will be in the class k − STq(N,M), if
∞∑
t=2

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} |at| < L1 |M −N | .

(1.22)

Motivated by the work of Mahmood et al. [29], Noor and Malik [33] and
Arif et al. [13], in this paper we find some properties such as necessary and
sufficient conditions, coefficient estimates, convolution results, linear combina-
tion, weighted mean, arithmetic mean, radii of starlikeness and distortion for
functions in the class k − UCVq(µ,N,M).
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2. Main Results

In this section of the paper, we will prove some major results.

2.1. Necessary and Sufficient Conditions.

Theorem 2.1. Let ĝ(ξ) ∈ A is of the form (1.1).
Then ĝ(ξ) ∈ k − UCVq(µ,N,M), if it fulfill the following inequality

∞∑
t=2

{2(k + 1)qL2 [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1 |at|

< L1 |M −N | . (2.1)

Proof. Presume that (2.1) be valid, then it is suffices to prove that

k

∣∣∣∣∣∣∣∣
(ML1 − L2)

(
Dq{ξDq(ℑµ

q ĝ(ξ))}
Dq(ℑµ

q ĝ(ξ))

)
− (NL1 − L2)

(ML1 + L2)
(

Dq{ξDq(ℑµ
q ĝ(ξ))}

Dq(ℑµ
q ĝ(ξ))

)
− (NL1 + L2)

− 1

∣∣∣∣∣∣∣∣
−ℜ


(ML1−L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1−L2)

(ML1+L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1+L2)

−1


< 1.

We consider

k

∣∣∣∣∣∣∣∣
(ML1 − L2)

(
Dq{ξDq(ℑµ

q ĝ(ξ))}
Dq(ℑµ

q ĝ(ξ))

)
− (NL1 − L2)

(ML1 + L2)
(

Dq{ξDq(ℑµ
q ĝ(ξ))}

Dq(ℑµ
q ĝ(ξ))

)
− (NL1 + L2)

− 1

∣∣∣∣∣∣∣∣
−ℜ


(ML1−L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1−L2)

(ML1+L2)

(
Dq{ξDq(ℑ

µ
q ĝ(ξ))}

Dq(ℑ
µ
q ĝ(ξ))

)
−(NL1+L2)

−1



≤ (k + 1)

∣∣∣∣∣∣∣∣
(ML1 − L2)

(
Dq{ξDq(ℑµ

q ĝ(ξ))}
Dq(ℑµ

q ĝ(ξ))

)
− (NL1 − L2)

(ML1 + L2)
(

Dq{ξDq(ℑµ
q ĝ(ξ))}

Dq(ℑµ
q ĝ(ξ))

)
− (NL1 + L2)

− 1

∣∣∣∣∣∣∣∣
=

2L2 (k + 1)
∑∞

t=2 |1− [t , q]|ψt−1 [t, q] |at|
L1 |M −N | −

∑∞
t=2 |{(ML1 + L2) [t, q]− (NL1 + L2)}ψt−1 [t, q]| |at|

.

The finale declaration is restricted over by 1 if

2L2 (1 + k)

∞∑
t=2

|[t− 1, q] q [t, q]ψt−1| |at|
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< L1 |M −N | −
∞∑
t=2

∣∣∣∣{ (ML1 + L2) [t, q]
− (NL1 + L2) bt

}
ψt−1 [t, q]

∣∣∣∣ |at| ,
which reduced to

∞∑
t=2

{2L2(k + 1)q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1 |at|

< L1 |M −N | .

□

By taking µ = 1 and q → 1−, we have the following results proved by Noor
and Malik [33].

Corollary 2.2. Let ĝ(ξ) ∈ A; then, ĝ ∈ k − UCV (N,M), if the following
inequality satisfies

∞∑
t=2

{2(1 + k) (t− 1) + |t (M + 1)− (1 +N)|} t |at| < |M −N | .

Theorem 2.3. If ĝ ∈ k − UCVq(µ,N,M), then

|at| ≤
L1 |M −N |

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1
.

(2.2)
Equality attains for the function

ĝ(ξ) = ξ+
L1 |M −N |

{2(1 + k)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1
ξt.

(2.3)

Proof. Since ĝ ∈ k − UCVq(µ,N,M), (1.20) holds. Since

∞∑
t=2

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1 |at|

< L1 |M −N | ,

we have

|at| ≤
L1 |M −N |

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1
.

Clearly the function given by (2.3) satisfies (2.2) and therefore ĝ(ξ) given by (2.3)
is in k − UCVq(µ,N,M). For above function, the result is clearly sharp. □
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2.2. Coefficient Bound for the class k − UCVq(µ,N,M).

Theorem 2.4. Let ĝ ∈ k − UCVq(µ,N,M), is of the form (1.1), then

|at| ≤
1

[t, q]

t−2∏
j=0

|(N −M) (q + 1) δlψj−1 − 4qMψj [j, q]|
4ψj+1 [j + 1, q] q

, (t ∈ N \ {1}) .

Proof. By using Lemma 1.5 and relation (1.21), this proof is straightforward. □

By taking µ = 1, in Theorem 2.4 we obtained the result due to proved by
Naeem et al. [30].

2.3. Linear Combination. Linear combination for our defined classes are
defined as following.

Theorem 2.5. Let ĝi ∈ k − UCVq(µ,N,M) and have the form ĝi (ξ) = ξ +∑∞
t=1 at, iξ

t, for i = 1, 2, 3, · · · , n. Further, let
∑n

i=1 ci = 1 and F (ξ) =∑n
i=1 ciĝi (ξ). Then F ∈ k − UCVq(µ,N,M)

Proof. As ĝi ∈ k − UCVq(µ,N,M), by the virtue of (2.1), we have

∞∑
t=2

[
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1

L1 |M −N |

]
|at, i|

< 1.

Therefore

F (ξ) =

n∑
i=2

ci

(
ξ +

∞∑
t=2

at, i · ξt
)

= ξ +

∞∑
t=2

(
n∑

i=2

ci · at, i

)
ξt.

Consider
∞∑
t=2

[{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]ψt−1

L1 |M −N |

](
n∑

i=2

ciat, i

)

=

n∑
i=2

(
∞∑
t=2

[{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
ψt−1

L1 |M −N |

]
at, i

)
ci

≤ 1.

Then F ∈ k − UCVq(µ,N,M). □

2.4. Weighted Mean. Let ĝ and ĥ be two analytic functions andW ≥ 0, then
their weighted mean is defined as:

Theorem 2.6. Let hW ∈ k − UCVq(µ,N,M), Then

hW (ξ) =

{
(1−W ) ĝ (ξ) + (1 +W ) ĥ (ξ)

2

}
.
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Proof. If ĝ and ĥ belongs to k−UCVq(µ,N,M), then their weighted mean hW is

also in k−UCVq(µ,N,M), where hW is defined by hW (ξ) =
{

(1−W )ĝ(ξ)+(1+W )ĥ(ξ)
2

}
.

As

hW (ξ) =

{
(1−W ) ĝ (ξ) + (1 +W ) ĥ (ξ)

2

}
,

=

{
2ξ +

∑∞
t=2 (1−W ) atξ

t +
∑∞

t=2 (1 +W ) btξ
t

2

}
,

= ξ +

∞∑
t=2

{
(1−W ) at +

∑∞
t=2 (1 +W ) bt

2

}
ξt.

To prove that hW (ξ) ∈ k − UCVq(µ,N,M), we need to show

∞∑
t=2

[
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1

L1 |M −N |

]
×
{
(1−W ) at + (1 +W ) bt

2

}
< 1.

For this, consider

∞∑
t=2

{
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]

L1 |M −N |

}
×
{
(1−W ) at + (1 +W ) bt

2

}
ψt−1

=
(1−W )

2

×
∞∑
t=2

{
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]

L1 |M −N |

}
ψt−1at

+
(1 +W )

2

×
∞∑
t=2

{
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]

L1 |M −N |

}
ψt−1bt.

Since ĝ, ĥ ∈ k − UCVq(µ,N,M), so by using (2.1), we have

∞∑
t=2

{
{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]

L1 |M −N |

}
×
{
(1−W ) at + (1 +W ) bt

2

}
ψt−1 <

(1−W )

2
(1) +

(1 +W )

2
(1) = 1.
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Hence the result follows. □

Corollary 2.7. For µ = 1, if ĝ and ĥ belongs to k − UCVq(µ,N,M) = k −
UCVq(N,M), then their weighted mean hW is also in k − UCVq(N,M).

Corollary 2.8. For µ = 1 and q → 1, if ĝ and ĥ belongs to k−UCVq→1(1, N,M) =
k−UCV (N,M), then their weighted mean hW is also in k−UCV (N,M).Where
hW (ξ) is defined by

hW (ξ) =

{
(1−W ) ĝ (ξ) + (1 +W ) ĥ (ξ)

2

}
.

2.5. Arithmetic Mean.

Theorem 2.9. Let ĝi ∈ k−UCVq(µ,N,M) where i = 1, 2, · · · , ν then the ”arith-
metic mean” AM (ξ) of the function ĝi is defined by AM (ξ) = 1

ν

∑ν
i=1 ĝi (ξ) , and

this also belongs to the class k − UCVq(µ,N,M).

Proof. As

AM (ξ) =
1

ν

ν∑
i=1

(
ξ +

∞∑
t=2

at, iξ
t

)
= ξ +

∞∑
t=2

(
1

ν

ν∑
i=1

at, i

)
ξt. (2.4)

Since ĝi ∈ k−UCVq(µ,N,M), for every i = 1, 2, · · · , ν, by using (2.1) and (2.4),
we have
∞∑
t=2

ψt−1

{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]

(
1

ν

ν∑
i=1

at, i

)

=
1

ν

ν∑
i=1

(
∞∑
t=2

ψt−1

{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]

)
at, i

≤ 1

ν

ν∑
i=1

(L1 |M −N |) = L1 |M −N | .

So,

∞∑
t=2

ψt−1

{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]

(
1

ν

ν∑
i=1

at, i

)
≤ L1 |M −N | .

□

2.6. Radii of Starlikeness. A function ĝ ∈ k − UCVq(µ,N,M), is said to be
starlike of order α (0 ≤ α < 1) if ReS∗ (α) > α.

Theorem 2.10. Let ĝ ∈ k − UCVq(µ,N,M). Then ĝ ∈ S∗ (α) for |ξ| < s1,
where

s1 =

[
(1− α) {2 (1 + k)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q] [t, q]!

L1 |M −N | (t− α) [µ+ 1, q]t−1

]( 1
t−1 )

.
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Proof. To prove ĝ ∈ S∗ (α) , it is enough to show that∣∣∣∣∣ ξĝ
′
(ξ) /ĝ (ξ)− 1

ξĝ′ (ξ) /ĝ (ξ) + 1− 2α

∣∣∣∣∣ < 1.

By using (1.1) we have∣∣∣∣∣ ξĝ
′
(ξ) /ĝ (ξ)− 1

ξĝ′ (ξ) /ĝ (ξ) + 1− 2α

∣∣∣∣∣ =
∞∑
t=2

(
t− α

1− α

)
|at| |ξ|t−1

. (2.5)

Since ĝ ∈ k − STq(µ,N,M), so from (2.1), we can easily obtain

∞∑
t=2

[t, q]!

[µ+ 1, q]t−1

({
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]

L1 |M −N |

)
|at|

< 1.

Now inequality (2.5), holds true, if

∞∑
t=2

[
t− α

1− α

]
|at| |ξ|t−1

<

∞∑
t=2

[t, q]!

[µ+ 1, q]t−1

[{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q]

L1 |M −N |

]
|at| ,

which implies that

|ξ| <

(
(1− α)

{
2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|

}
[t, q] [t, q]!

L1 |M −N | (t− α) [µ+ 1, q]t−1

)( 1
t−1 )

.

Which completes the proof. □

2.7. Growth and Distortion Theorems.

Theorem 2.11. If ĝ ∈ k−UCVq(µ,N,M) has the form (1.1), then r (1−Υ) ≤
|ĝ (ξ)| ≤ r (1 + Υ) , where,

Υ =
L1 |M −N |

{2(k + 1)L2q + |(ML1 + L2) (1 + q)− (NL1 + L2)|}ψ1 (1 + q)
,

with |ξ| = r < 1, 0 < r < 1.

Proof. Consider

|ĝ (ξ)| =

∣∣∣∣∣ξ +
∞∑
t=2

atξ
t

∣∣∣∣∣ = r +

∞∑
t=2

|at| rt,

since 0 < r < 1, so rt < r ⇒ r2 < r

|ĝ (ξ)| ≤ r + r

∞∑
t=2

|at| = r

(
1 +

∞∑
t=2

|at|

)
. (2.6)
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Similarly, by using triangular inequalities, we have

|ĝ (ξ)| ≥ r

(
1−

∞∑
t=2

|at|

)
. (2.7)

Has ĝ ∈ k − UCVq(µ,N,M), so we have

{2(k + 1)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

∞∑
t=2

at

≤
∞∑
t=2

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1 |at| .

By using (2.1), we obtain

{2(k + 1)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

∞∑
t=2

|at|

≤ L1 |M −N | ,
which gives

∞∑
t=2

|at| ≤
L1 |M −N |

{2(k + 1)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

=
L1 |M −N |

{2(k + 1)L2q + |(ML1 + L2) (1 + q)− (NL1 + L2)|} (1 + q)ψ1
.

Using above relativity in (2.6), (2.7), we get required results. □

Theorem 2.12. If ĝ ∈ k−UCVq(µ,N,M) has the form (1.1), then (1− rtϱ) ≤∣∣∣ĝ′
(ξ)
∣∣∣ ≤ (1 + rtϱ) , where,

ϱ =
L1 |M −N |

{2(k + 1)L2q + |(ML1 + L2) (1 + q)− (NL1 + L2)|}ψ1 (1 + q)
,

with
|ξ| = r < 1, 0 < r < 1.

Proof. Consider ∣∣∣ĝ′
(ξ)
∣∣∣ = ∣∣∣∣∣1 +

∞∑
t=2

tatξ
t−1

∣∣∣∣∣ = 1 + rt−1
∞∑
t=2

t |at| ,

since 0 < r < 1, so rt < r,∣∣∣ĝ′
(ξ)
∣∣∣ ≤ r + r

∞∑
t=2

|at| = 1 +

∞∑
t=2

t |at| . (2.8)

Similarly ∣∣∣ĝ′
(ξ)
∣∣∣ ≥ 1−

∞∑
t=2

|at| . (2.9)
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It can easily be observed that

{2(1 + k)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

∞∑
t=2

at

≤
∞∑
t=2

{2(k + 1)L2q [t− 1, q] + |(ML1 + L2) [t, q]− (NL1 + L2)|} [t, q]ψt−1 |at| .

By using (2.1), we obtain

{2(k + 1)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

∞∑
t=2

|at|

≤ L1 |M −N | ,

which gives

∞∑
t=2

|at| ≤
L1 |M −N |

{2(k + 1)L2q [1, q] + |(ML1 + L2) [2, q]− (NL1 + L2)|} [2, q]ψ1

=
L1 |M −N |

{2(k + 1)L2q + |(ML1 + L2) (1 + q)− (NL1 + L2)|} (1 + q)ψ1
.

Using above relation in (2.8), (2.9), we get required results. □

Remark 2.13. (i)For µ = 1, and µ = 1, q → 1−, in Theorem 2.11, were discuss
in Noor and Malik [33]. (ii)For µ = 1, and µ = 1, q → 1−, in Theorem 2.12,
were discuss in Noor and Malik [33].

3. Conclusions

In this article, we defined a new class k−UCVq(µ,N,M) of analytic functions
in conic domains, by using q-analogue of Noor integral operator. We studied
various properties such as necessary and sufficient conditions, coefficient bounds,
convolution properties, linear combinations, weighted means, arithmetic means,
distortion and covering theorems and radii of starlikenss for function belonging
to this class. We also pointed out many special cases in the form of corollaries
by specializing the parameters.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable
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24. S. Kanas and D. Răducanu, Some class of analytic functions related to conic domains,

Math. Slovaca 64 (2014), 1183-1196.
25. M. Al-Kaseasbeh and M. Darus, Uniformly geometric functions involving constructed op-

erators, J. Compl. Anal. (2017), 1-7.

26. W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J. 1 (1952), 169-185.
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