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STUDY OF YOUNG INEQUALITIES FOR MATRICES

M. AL-HAWARI∗ AND W. GHARAIBEH

Abstract. This paper investigates Young inequalities for matrices, a prob-
lem closely linked to operator theory, mathematical physics, and the arithmetic-

geometric mean inequality. By obtaining new inequalities for unitarily

invariant norms, we aim to derive a fresh Young inequality specifically
designed for matrices.To lay the foundation for our study, we provide an

overview of basic notation related to matrices. Additionally, we review pre-

vious advancements made by researchers in the field, focusing on Young
improvements.Building upon this existing knowledge, we present several

new enhancements of the classical Young inequality for nonnegative real

numbers. Furthermore, we establish a matrix version of these improve-
ments, tailored to the specific characteristics of matrices. Through our

research, we contribute to a deeper understanding of Young inequalities in

the context of matrices.
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1. Introduction

Let Mn(C) be the space of n Ö n complex matrices and let |||·||| denote any
unitarily invariant (or symmetric) norm on Mn(C). So, |||UAV ||| = |||A||| for
all A ∈ Mn(C) and for all unitary matrices U, V ∈ Mn(C). For A ∈ Mn(C), the
Hilbert-Schmidt norm, the trace norm, and the spectral norm of A are defined

by ∥A∥2 =
n∑

j=1

s2j (A))1/2, ∥A∥1 =
n∑

j=1

sj(A)), and ∥A∥ = s1(A), respectively

where s1(A) ≥ ... ≥ sn(A)are the singular values of A, that is, the eigenvalues
of the positive semidefinite matrix|A| = (A∗A)1/2.

Note that ∥A∥2 = (tr|A|2)1/2 and A1 = tr|A|, where tr is the usual trace
functional. It is evident that these norms are unitarily invariant, and it is known
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that each unitarily invariant norm is a symmetric guage function of singular
values [[8], p. 91].

The well-known Young inequality is a classic outcome attributed to William
Henry Young (1863–1942), an English mathematician. For the first time, it
officially appeared in a search W. H.Young [14].

Even though Young inequality looks very simple, it is very important in ma-
trix theory. The classical Young inequality for two scalars is the v-weighted
arithmetic–geometric mean inequality, which is a fundamental relation between
two non-negative real numbers. This inequality says that if a, d ≥ 0 and 0 ≤ v
≤ 1, then

avd1−v ≤ va+ (1− v)d,

with equality if and only if a = d, this inequality can be written as ad ≤ ap

p + dq

q ,

if p,q > 1 such that 1
p + 1

q = 1. If v = 1
2 , we take out the arithmetic–geometric

mean inequality
√
ad ≤ a+d

2 .
The matrix version of classical Young inequality proved by T. Ando [1], if

A,M,X ∈ Mn(C), then

si(AM) ≤ (
Ap

p
+

Mq

q
),

for i = 1,...,n. so the trace version hold

tr
∣∣AvM1−v

∣∣ ≤ tr(vA+ (1− v)M),

And the determinant version [[10], p.467]

det(AvM1−v) ≤ det(vA+ (1− v)M).

F̧irst refinement for Young inequality was finding by Hirzallah and Kittaneh [9]
as the follows:

If a, d ≥ 0 and 0 ≤ v ≤ 1, then

(avd1−v)2 + r2(a− d)2 ≤ (va+ (1− v)d)2. (1)

Next improvement was defined by Kittaneh and Manasrah [12] If a, d ≥ 0 and
0 ≤ v ≤ 1, then

avd1−v + r(
√
a−

√
d)2 ≤ va+ (1− v)d, (2)

where r = min{v, 1− v}.
Kittaneh and Manasrah give a generalization [6] that if a, d > 0 and 0 ≤ v ≤ 1,

then for m = 1, 2, 3, ..., we have

(avd1−v)m + rm(a
m
2 − d

m
2 )2 ≤ (va+ (1− v)d)m (3)

where r = min{v, 1−v}. And for matrix they proved generalization as following(∣∣∣∣∣∣AvXM1−v
∣∣∣∣∣∣)m + rm

(
|||AX|||

m
2 − |||XM |||

m
2

)2
≤ (v |||AX|||+ (1− v) |||XM |||)m (4)

Here some important Corollary, Theorem, and Lemma we will need it.
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Lemma 1.1. [7] Let Φ be a strictly increasing convex function defined on an
interval I. Let x, y, z, and w are points in I such that

z − w ≤ x− y,

where w ≤ z ≤ x and y ≤ x. Then

(0 ≤)Φ(z)− Φ(w) ≤ Φ(x)− Φ(y).

Corollary 1.2. [7] If a, d > 0 and 0 ≤ v ≤ 1, A,M,X ∈ Mn(C) such that A
and M are positive semidefinite, then for p ∈ R, p ≥ 1 we have

rp((a+ d)p − (2
√
ad)p) ≤ (va+ (1− v)d)p − (avd1−v)p. (5)

The matrix version of 5, [7]

rp
(
∥AX +XM∥p2 − 2p

∥∥∥A 1
2XM

1
2

∥∥∥p
2

)
≤ ∥vA+ (1− v)M∥p2 −

∥∥AvXM1−v
∥∥p
2
.

(6)

Theorem 1.3. [11] Let m be positive integer and v a positive real number such
that 0 ≤ v ≤ 1, then we have

(avd1−v)m + rm
(

dm+1−am+1

d−a − (m+ 1)(ad)
m
2

)
≤ (va+ (1− v)d)m,

where r = min{v, 1− v}.

Theorem 1.4. [11] Let M,E, Y ∈ Mn(C) be positive definite matrices and
0 ≤ v ≤ 1. Then for m = 1, 2, 3, ..., we have:∣∣∣∣∣∣AvXM1−v

∣∣∣∣∣∣m+rm
(

|||XM |||m+1−|||AX|||m+1

|||XM |||−|||AX||| − (m+ 1)(|||XM ||| |||AX|||)m
2

)
≤ (v |||AX|||+ (1− v) |||XM |||)m .

2. Main results

At first we examined some inequalities for real number, after that we discuss
the matrix version of them . Now by assuming m = 1 in the inequality of
Theorem 1.3, then we have

r(
d2 − a2

d− a
− 2(ad)

1
2 ) ≤ va+ (1− v)d− avd1−v. (7)

simplifying this inequality we get again inequality 2
This inequality will help us prove theorem 2.1 which shows another way to

prove corollary 2 in [7].

Theorem 2.1. If a, d > 0, 0 ≤ v ≤ 1, and p ∈ R (p ∈ R, p ≥ 1), then

rp
((

d2 − a2

d− a

)p

− (2)p(ad)
p
2

)
≤ (va+ ((1− v)d)p − (avd1−v)p. (8)

Proof. If Ψ : [0,∞) → R is a strictly increasing convex function, then

Ψ
(
r d2−a2

d−a

)
−Ψ

(
2r(ad)

1
2

)
≤ Ψ(va+ (1− v)d)−Ψ

(
avd1−v

)
.
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Let z = r d2−a2

d−a , w = 2r(ad)
1
2 , x = va+(1− v)d, and y = avd1−v. Then based

on the inequality 7 and the arithmetic-geometric mean inequality , we have

z − w ≤ x− y.

Also w ≤ z ≤ x, y ≤ x, then by lemma 1.1

Ψ (z)−Ψ(w) ≤ Ψ(x)−Ψ(y) .

□

Taking Ψ(x) = xp, p ∈ R (p ∈ R, p ≥ 1), then we have

rp
((

d2 − a2

d− a

)p

− (2)p(ad)
p
2

)
≤ (va+ ((1− v)d)p − (avd1−v)p.

Which is the same result in corollary 2 in [7].
In the next theorem we present prove for new result in same manner based

on the following inequality

(avd1−v)2 + r2(a− d)2 ≤ (va+ (1− v)d)2

which we can write as

r2
(
d3 − a3

d− a

)
− r2 (3ad) ≤ (va+ (1− v)d)2 − (avd1−v)2 (9)

Theorem 2.2. If a, d > 0 and 0 ≤ v ≤ 1, then for p ∈ R, p ≥ 1 we have

r2p
[(
d2 + a2 + ad

)p − (3ad)p
]
≤ (va+ (1− v)d)2p − (avd1−v)2p. (10)

Proof. Let z = r2
(

d3−a3

d−a

)
, w = r2 (3ad) , x = (va + (1 − v)d)2, and y =

(avd1−v)2, and Ψ : [0,∞) → R is a strictly increasing convex function. Then
based on the inequality 9 and the arithmetic-geometric mean inequality, we have

z − w ≤ x− y

Also w ≤ z ≤ x, y ≤ x, then by Lemma 1.1

Ψ (w)−Ψ(z) ≤ Ψ(x)−Ψ(y) .

Now, taking Ψ(x) = xp, where p ∈ R, p ≥ 1, we have

Ψ

(
r2

d3 − a3

d− a

)
−Ψ

(
3r2ad

)
≤ Ψ

(
(va+ (1− v)d)2

)
−Ψ

(
(avd1−v)2

)
,

then (
r2

d3 − a3

d− a

)p

−
(
3r2ad

)p ≤ (va+ (1− v)d)2p − (avd1−v)2p,

equivalently

r2p
[(
d2 + a2 + ad

)p − (3ad)p
]
≤ (va+ (1− v)d)2p − (avd1−v)2p.

□
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Depending on the result in the previous theory, we can conclude that if 2p = q,
so that we have following corollary

Corollary 2.3.

rq
[(
d2 + a2 + ad

) q
2 − (3ad)

q
2

]
≤ (va+ (1− v)d)q − (avd1−v)q.

take v = 1
2 , so r = 1

2 , now ew can get some inequalities by taking p = 1, 2, 3, ..., n
I) q = 1

1

2

[(
d2 + a2 + ad

) 1
2 − (3ad)

1
2

]
≤ 1

2
(a+ d)− (ad)

1
2

1

2

(
d2 + a2 + ad

) 1
2 − (3ad)

1
2

2
+ (ad)

1
2 ≤ 1

2
(a+ d)

1

2

(
d2 + a2 + ad

) 1
2 +

(
1−

√
3

2

)
(ad)

1
2 ≤ 1

2
(a+ d)

II) q = 2

(
1

2
)2(a− d)2 ≤ (

1

2
)2(a+ d)2 − (ad)

(
1

2
)2
(
d2 + a2 + ad

)
− (

1

2
)2(3ad) + (ad) ≤ (

1

2
)2(a+ d)2

(
1

2
)2
(
d2 + a2 + ad

)
+ (1− 3

4
)(ad) ≤ (

1

2
)2(a+ d)2

(
1

2
)2
(
d2 + a2 + ad

)
+

1

4
(ad) ≤ (

1

2
)2(a+ d)2

III) q = 3

1

23

[(
d2 + a2 + ad

) 3
2 − (3ad)

3
2

]
≤ 1

23
(a+ d)3 − (ad)

3
2

1

23
(
a2 + ad+ d2

) 3
2 +

(
1− (3)

3
2

23

)
(ad)

3
2 ≤ 1

23
(a+ d)3

IV) q = 4

1

24

[(
d2 + a2 + ad

)2 − (3ad)2
]

≤ 1

24
(a+ d)4 − (ad)2

1

24
(
d2 + a2 + ad

)2 − 1

24
(3ad)2 + (ad)2 ≤ 1

24
(a+ d)4

1

24
(
d2 + a2 + ad

)2 − 1

24
(3ad)2 + (ad)2 ≤ 1

24
(a+ d)4

1

24
(
d2 + a2 + ad

)2
+ (1− 32

24
)(ad)2 ≤ 1

24
(a+ d)4

V) q = n, n ∈ N

1

2n
(
d2 + a2 + ad

)n
2 + (1− 3

n
2

2n
)(ad)

n
2 ≤ 1

2n
(a+ d)n.
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Since rm(a
m
2 − d

m
2 )2 = rm(am + dm)− 2rm (ad)

m
2 , the inequality 3 becomes

rm(am + dm)− 2rm (ad)
m
2 ≤ (va+ ((1− v)d)m − (avd1−v)m.

Now, replace a by a2, and d by d2, we have

rm(a2m + d2m)− 2rm (ad)
m ≤ (va2 + (1− v)d2)m − (avd1−v)2m. (11)

We obtain next theory by using previous result and same method of proof in
theorem 2.1

Theorem 2.4. If a, d > 0 and 0 ≤ v ≤ 1, then for p ∈ R, p ≥ 1 we have

rp(a2 + d2)p − (2rad)
p ≤ (va2 + ((1− v)d2)p − (avd1−v)2p (12)

Proof. In 11 let m = 1.Then

r(a2 + d2)− 2r (ad) ≤ va2 + ((1− v)d2 − (avd1−v)2.

Applying Ψ : [0,∞) → R is a strictly increasing convex function

Φ
(
r(a2 + d2)

)
− Φ (2r (ad)) ≤ Φ

(
ta2 + ((1− v)d2

)
− Φ

(
(avd1−v)2

)
.

And let Ψ(x) = xp, p ∈ R. Then

rp(a2 + d2)p − (2rad)
p ≤ (ta2 + ((1− v)d2)p − (avd1−v)2p

≤ (ta2)p + ((1− v)d2)p − (avd1−v)2p.

□

Now we start to prove matrix version. In theorem 1.4 , let m = 2, and
|||.||| = ∥.∥2 , then we have

r2

(
∥XM∥32 − ∥AX∥32
∥XM∥2 − ∥AX∥2

− 3 ∥AX∥2 ∥XM∥2

)
≤ (v ∥AX∥2 + (1− v) ∥XM∥2)

2 −
∥∥AvXM1−v

∥∥2
2
.

Applying lemma 1.1 on the above inequality, we are able to begin to prove
the following result.

Theorem 2.5. Let A,M,X ∈ Mn(C) such that A and M are positive semi-
definite. If Φ : [0,∞) → R is a strictly increasing convex function, then we
have

Φ(r2
∥XM∥32 − ∥AX∥32
∥XM∥2 − ∥AX∥2

)− Φ
(
3r2 ∥AX∥2 ∥XM∥2

)
≤ Φ

(
(v ∥AX∥2 + (1− v) ∥XM∥2)

2
)
− Φ

(∥∥AvXM1−v
∥∥2
2

)
.

equivalently

Φ(r2 ∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2)− Φ
(
3r2 ∥AX∥2 ∥XM∥2

)
≤ Φ

((
v ∥AX∥22 + (1− v) ∥XM∥22

)2)
− Φ

(∥∥AvXM1−v
∥∥2
2

)
.
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In particular, when Φ(x) = xp (p ∈ R, p ≥ 1), we have

r2p
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)p
− r2p (3 ∥AX∥2 ∥XM∥2)

p

≤ (v ∥AX∥2 + (1− v) ∥XM∥2)
2p

+
∥∥AvXM1−v

∥∥2p
2

.

If p = 1, we have

r2
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)
− r2 (3 ∥AX∥2 ∥XM∥2)

≤ (v ∥AX∥2 + (1− v) ∥XM∥2)
2 −

∥∥AvXM1−v
∥∥2
2
.

equivalently

r2 ∥AX −XM∥22 ≤ (v ∥AX∥2 + (1− v) ∥XM∥2)
2 −

∥∥AvXM1−v
∥∥2
2
.

If p = 2, we have

r4
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)2
− r4 (3 ∥AX∥2 ∥XM∥2)

2

≤ (v ∥AX∥2 + (1− v) ∥XM∥2)
4 −

∥∥AvXM1−v
∥∥4
2
.

Which are some forms of inequalities that may be useful in future.

Lemma 2.6. [1]
A,M,X ∈ Mn(C) such that A and M are positive semidefinite.∥∥∥A 1

2XM
1
2

∥∥∥
2
≤
∥∥∥A 1

2X
∥∥∥
2

∥∥∥XM
1
2

∥∥∥
2
≤ ∥AX∥

1
2
2 ∥XM∥

1
2
2

.

Out of theory 2.5 take 2p = q, we have the next Corollary.

Corollary 2.7. Let A,M,X ∈ Mn(C) such that A and M are positive semidef-
inite,and 0 ≤ v ≤ 1

rq
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) q
2 − rq (3 ∥AX∥2 ∥XM∥2)

q
2

≤ (v ∥AX∥2 + (1− v) ∥XM∥2)
q −

∥∥MvXM1−v
∥∥q
2
.

where r = min{v, 1− v}.

Let v = 1
2 ⇒ r = 1

2
I) q = 1

1

2

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 1
2 − 1

2
(3 ∥AX∥2 ∥XM∥2)

1
2

≤ 1

2
(∥AX∥2 + (∥XM∥2)−

∥∥∥A 1
2XM

1
2

∥∥∥
2
.

1

2

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 1
2 − 1

2
(3 ∥AX∥2 ∥XM∥2)

1
2

≤ 1

2
(∥AX∥2 + (∥XM∥2)− ∥AX∥

1
2
2 ∥XM∥

1
2
2 .(by lemma 2.6)
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1

2

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 1
2 − 1

2
(3 ∥AX∥2 ∥XM∥2)

1
2

+ ∥AX∥
1
2
2 ∥XM∥

1
2
2

≤ 1

2
(∥AX∥2 + (∥XM∥2) .

1

2

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 1
2 −

(
1−

√
3

2

)
∥AX∥

1
2
2 ∥XM∥

1
2
2

≤ 1

2
(∥AX∥2 + (∥XM∥2) .

II) q = 2 :

1

2

2 [
∥AX∥22 + ∥XM∥22 − 2 ∥AX∥2 ∥XM∥2

]
≤ 1

2

2

(∥AX∥2 + (∥XM∥2)
2 −

∥∥∥A 1
2XM

1
2

∥∥∥2
2
(lemma 2.6)

1

2

2 [
∥AX∥22 + ∥XM∥22 − 2 ∥AX∥2 ∥XM∥2

]
≤ 1

2

2

(∥AX∥2 + (∥XM∥2)
2 − ∥AX∥2 ∥XM∥2

(
1

2
)2(∥AX∥2 − ∥XM∥2)

2 ≤ (
1

2
)2(∥AX∥2 + ∥XM∥2)

2 − ∥AX∥2 ∥XM∥2

(
1

2
)2
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)
− (

1

2
)2(3 ∥AX∥2 ∥XM∥2)

+ (∥AX∥2 ∥XM∥2)

≤ (
1

2
)2(∥AX∥2 + ∥XM∥2)

2

(
1

2
)2
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)
+ (1− 3

4
)(∥AX∥2 ∥XM∥2)

≤ (
1

2
)2(∥AX∥2 + ∥XM∥2)

2

(
1

2
)2
(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)
+

1

4
(∥AX∥2 ∥XM∥2)

≤ (
1

2
)2(∥AX∥2 + ∥XM∥2)

2

III) q = 3

1

2

3 [(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 3
2 − (3 ∥AX∥2 ∥XM∥2)

3
2

]
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≤ 1

23
(∥AX∥2 + ∥XM∥2)

3 − (∥AX∥2 ∥XM∥2)
3
2

1

23

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

) 3
2

+

(
1− (3)

3
2

23

)
(∥AX∥2 ∥XM∥2)

3
2

≤ 1

23
(∥AX∥2 + ∥XM∥2)

3

Now, if q = n, n ∈ N
1

2n

(
∥AX∥22 + ∥XM∥22 + ∥AX∥2 ∥XM∥2

)n
2

+ (1− 3
n
2

2n
)(∥AX∥2 ∥XM∥2)

n
2

≤ 1

2n
(∥AX∥2 + ∥XM∥2)

n

We prove in theorem 11 a matrix version of the inequality 11

Theorem 2.8. Let A,M,X ∈ Mn(C) such that A and M are positive semidefi-
nite, p ∈ R, p ≥ 1. Then

rp
(
|||AX|||2 + |||XM |||2 − 2 |||AX||| |||XM |||

)p
≤

(
v |||AX|||2 + (1− v) |||XM |||2

)p
−
(∣∣∣∣∣∣∣∣∣AvXM (1−v)

∣∣∣∣∣∣∣∣∣)2p .
Proof. based in inequality 4, and by putting A = A2, M = M2(∣∣∣∣∣∣∣∣∣A2vXM2(1−v)

∣∣∣∣∣∣∣∣∣)m
+ rm

(∣∣∣∣∣∣A2X
∣∣∣∣∣∣m +

∣∣∣∣∣∣XM2
∣∣∣∣∣∣m − 2

∣∣∣∣∣∣A2X
∣∣∣∣∣∣m ∣∣∣∣∣∣XM2

∣∣∣∣∣∣m)
≤
(∣∣∣∣∣∣∣∣∣AvXM (1−v)

∣∣∣∣∣∣∣∣∣)2m
+ rm

(
|||AX|||2m + |||XM |||2m − 2 |||AX|||2m |||XM |||2m

)
≤
(
v |||AX|||2 + (1− v) |||XM |||2

)m
.

by lemma 2.6, and by inequality 11. Let m = 1.Then

r
(
|||AX|||2 + |||XM |||2 − 2 |||AX||| |||XM |||

)
≤

(
v |||AX|||2 + (1− v) |||XM |||2

)
−
(∣∣∣∣∣∣∣∣∣AvXM (1−v)

∣∣∣∣∣∣∣∣∣)2 .
Let Φ : [0,∞) → R be a strictly increasing convex function, and applying

lemma 1.1 on the previous inequality. Then we have

Φ
(
r |||AX|||2 + |||XM |||2)

)
− Φ (2r |||AX||| |||XM |||)

≤ Φ
((

v |||AX|||2 + (1− v) |||XM |||2
))

− Φ

((∣∣∣∣∣∣∣∣∣AvXM (1−v)
∣∣∣∣∣∣∣∣∣)2) .
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In particular, when Φ(x) = xp (p ∈ R, p ≥ 1), we have

rp
(
|||AX|||2 + |||XM |||2p − 2 |||AX||| |||XM |||

)p
≤

(
v |||AX|||2 + (1− v) |||XM |||2

)p
−
(∣∣∣∣∣∣∣∣∣AvXM (1−v)

∣∣∣∣∣∣∣∣∣)2p .
□

3. Conclusions

We have introduced other forms of improvement to Young inequalities based
on the same manner of evidence in the research [7]. we prove Theorem 2.1
using inequality 2.7 presented in the paper [1], and lemma 1.1. By same way
we prove Theorem 2.2. Corollary 2.3 it is new improvement based on theorem
2.2. Theorem 2.4 is too another improvement of Young inequality we prove with
corollary 2.3. After that, we use these inequalities that we derive to get new
improvement of young inequalities for matrices which we explained in theory
2.5, theory 2.7, and theory 2.8. The use of these improvements may inspire
researchers to look for new improvements and reflections of Young and Heinz
inequalities for matrices.
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