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ANALYSIS OF AN M/G/1 QUEUEING SYSTEM WITH

DISGRUNTLED JOBS AND DIFFERENT TYPES OF SERVICE

RATE

M. KANNAN, V. POONGOTHAI AND P. GODHANDARAMAN∗

Abstract. This paper investigates a non Markovian M/G/1 queue with

retrial policy, different kind of service rates as well as unsatisfied clients

which is inspired by an example of a transmission medium access control
in wireless communications. The server tends to work continuously until

it finds at least one client in the system. The server will begin its main-

tenance tasks after serving all of the clients and if the system becomes
empty. Provisioning periods in regular working periods and maintenance

service periods should be evenly divided. Using supplementary variable

technique, the amount of clients in the system as well as in the orbit were
found. Further few performance measures of the system were demonstrated

numerically.
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1. Introduction

Now-a-days, queueing systems are considered as a powerful tool in various
fields like wired and wireless communication networks, logistics environment,
manufacturing systems and operating systems. Data communication systems
and computer networks are showing their rapid growth in recent technological
development that leads to significant evolution in many areas like advances in
network protocols, voice transmission, video streams, etc.

If an arriving client finds the busy server, he temporarily leaves the service
channel and reattempt his request for service over a random time which is de-
picted as the retrial queueing system. This blocked client in between trials, joins
a waiting space of disappointed clients known as orbit. For example, packet
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switching network system, collision detection, local area networks, web access,
etc.

Another important factor in communication systems are the unsatisfied clients.
If a client is unsatisfied with the service provided, then he retries again and again
until the successful service completion. For example, the messages with errors
in multiple access telecommunication systems are re-sent may be identified as
retrial queues with unsatisfied client.

The server tends to work endlessly until it finds a last existing client in the
system. After completing service for all the existing clients and no more client is
found in the empty system, exists the service area for a particular duration which
is termed as vacation. It can be viewed in real-life scenarios like communication
systems, personalized manufacturing, production lines, etc., where the server do
its maintenance activities during vacation.

Kim and Kim [11] conducted a survey on retrial queues with various queueing
models that focuses on queue length distributions and the waiting period of the
arriving jobs are also obtained. Kulkarni and Liang [12], Templeton [18] and
Artalejo [2] have gathered explicit recent reviews on queues with retrial policy.

Poongothai and Godhandaraman [14] approach a service facility with front
and back room serves. The arriving customers in front room service is unsatisfied
they may rejoin the service again until finished service. The main aim of the
problem is constraint programing model to solve queue control problem.

Chang, Liu and Ke [4] developed a truncated classical and constant retrial
policies for single server queue for which the stationary probabilities are for-
mulated using quasi birth and death method. A recursive solver procedure is
developed to obtain the stationary probabilities of the structure.

D’Arienzo, Dudin, Dudin and Manzo [5] analysed on a single server with finite
capacity follows a MAP and phase type of service. This model is provided for
the number of customers when attained to the pre threshold value. They also
discussed with performance measures and numerical illustrations.

Fiems [9] reviewed the concept of retrial queues with general retrial times. Dif-
ferent queueing systems are considered with general distribution of interarrival
and service times. Dutta and Choudhary [8] investigated aM/M/1 queueing sys-
tem for its performance measures using simulation techniques. The performance
of the system is effectively described with the use of substitution estimators and
alternative estimators.

Dimitriou [6] has studied the asymptotic behaviour of a retrial queue with
increased retrial rates and subject to varying arrival rates being dependent on
events. Li and Wang [13] have discussed a single server Markovian retrial queue-
ing system subject to catastrophes. Following a repair process, a customer may
re–join or balk the system subject to observable and unobservable levels.

Arivudainambi, Godhandaraman and Rajadurai [1] analysed the performance
measures of a repeated queueing model with single server and working rest where
the steady state probabilities and queue size distribution were found. The steady
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state system size probabilities and sensitivity analysis are obtained by Som and
Kumar [17] for two heterogeneous server queueing model using iterative method.

Bouchentouf, Cherfaoui and Boualem [3], followed up with the single server
M/M/1/N queueing system further they obtained steady state by considering
balking, reneging and vacation. The cost function and numerical illustration
were analyzed.

Do [7] established a single server repeated queue and working rest period that
has been illustrated using an example of a transmission medium access control in
wireless communications. Jain, Dhibar and Sanga [10] investigated Markovian
queueing model with working vacation, retrial concept and impatient customers.

Vishnevskii and Dudin [19] considered a model of correlated arrival of the cus-
tomers with application to model communication systems for markovian batch
arrival of customers. According to Sennot, Humblet and Tweedie [15], the non
ergodicity of the Markov chain fulfils Kaplan’s requirement explicitly.

In this paper, we look at a few exceptional situations of our model that are
compatible with the existing literature. The model is reduced to the M/G/1
queue and the outcomes accord with Zhang and Hou [20]. Shortle, Thompson,
Gross and Harris [16], the PGF of the amount of clients in organization, the idle
probability and the average organization size in this case may be simplified to
the following formulations, which are regular with the well known P-K formula.

We may notice that plenty of works have been done in existing literature tied
up with disappointed clients and different types of service rates. On account of
the author’s perception, the present work is the foremost work that examines a
one server with repeated policy, unsatisfied clients and different types of service
rate.

2. Practical Application of the Suggested Framework

2.1. Semiconductor Manufacturing Process. Semiconductors widely used
in all electronic devices hold a conductivity between conducting and non con-
ducting materials. They have a major contribution to all our electronic gadgets
like radio, television, computers, medical diagnostic tools, etc. With the devel-
opment in semiconductor technology, the construction of electronic gadgets in a
smaller size, faster performance, and reliable mode emerged, which in turn has
made our lives much easier.

In Figure 1, the manufacturing of a semiconductor process is considered. Sil-
icon wafer sheets are widely used in the manufacturing process. The silicon
sheets (arrival rate) enter the processing machine (service rate), if available. If
the processing machines are occupied in service, the silicon wafers await their
turn in the waiting space (orbit). From the orbit, the sheets enter the process-
ing unit upon their availability. After success under the fabrication wafer and
dicing process, it comes out as a semiconductor. Some of the semiconductors
are defective by Laser Fault Injection (LFI) attacks.
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Figure 1. Semiconductor Manufacturing Process

The defective semiconductors are joined in the waiting space and thereby
reprocessed to become a finished product. The machines are subject to regular
maintenance for improving their efficiency. During this maintenance period,
the fabrication wafer and dicing processing undergo a slower pace of service
(lower service rate). After the completion of the maintenance period, then the
processing undergo a regular pace of service (normal service rate).

2.2. E - Commerce. Nowadays, with the bloom in technology, most peo-
ple prefer online purchases through e-commerce sites. E-commerce sites like
Amazon, Flipkart, Myntra, etc., are selling various products such as electronic
devices, clothes, home appliances, grocery and so on. E-commerce websites an-
nounce enormous discounts and attractive offers during festival periods. The
launching of new products on these sites also hikes up the number of demands
placed online.

During this period the demands for online service are pretty high. A customer
may place orders online from the comfort of his/her own device at a convenient
time. This phenomenon may be referred to as getting service. For customers
arriving during a special occasion or peak hours, the e-commerce site servers are
often busy and the customers requesting service have to wait in a virtual space
(orbit) for the availability of the servers.

The maintenance of the e-commerce sites which includes updating offers, new
arrivals, and enhancing the system efficiency takes place after providing service
to the existing demands. During this period, the customer services are met
at a slow service rate. Customers having booked a particular item online may
replace their orders and retry service while waiting in the orbit if the customer
feels dissatisfied in the sense of price variation, quality, and quantity of the
product, etc.
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3. Model Depiction and Ergodicity State

The client emergence to request their demand pursues a Poisson fashion with
rate λ and starts the service instantly on finding idle service channel. At the
arrival period, if a client finds the busy service area, then the client sent to the
orbit.

Random law, along with the distribution function B(t) and the Laplace Stielt-
jes Transform (LST) B∗(γ), determines which client in the buffer will access the
service channel. The clients remains providing service at a rate µb in a regular
busy period pursues an arbitrary variable accompanied by a distribution func-
tion Sb(t) and Laplace Stieltjes transform S∗

b (γ). After finishing service, if any
client gets disappointed by the service, the client may come back to the orbit
as unsatisfied client by means of possibility r (0 ≤ r ≤ 1) or else departs the
organization using possibility s.

At once the orbit becomes vacant, the server begins the maintenance phase.
The clients served at a lesser servicing rate µv during maintenance phase pur-
sues an arbitrary variable using distribution function Sv(t) and Laplace Stieltjes
transform S∗

v (γ). Later the fulfillment of maintenance phase, the server alter its
rate of service from µv to µb, in case it finds any client in waiting area.

In Markov process, the state of system is dertermined at particular duration
t by {L(t);t ≥ 0}={(B(t),Y (t),τ0(t),τ1(t),τ2(t),t ≥ 0}, whereas B(t) indicates
state of the server (0, 1 & 2, for an idle server, busy as well as maintenance
phase correspondingly) & Y (t) signifies the total count of clients in orbit at
period t.

If B(t) = 0 & Y (t) > 0, then τ0(t) acts for the elapsed retrial time, if B(t) = 1,
then τ1(t) acts for the elapsed service phase between normal busy period at
duration t, if B(t) = 2 & Y (t) ≥ 0, then τ2(t) acts for the elapsed maintenance
phase at set up t. The tasks γ(y)dy, µb(y)dy & µv(y)dy are the act of restricted
achievement rates for retrial, facility and maintenance phase each at set up x.

i.e., γ(y)dy= dB(y)
1−B(y) , µb(y)dy=

dSb(y)
1−Sb(y)

, µv(y)dy=
dSv(y)
1−Sv(y)

.

3.1. Ergodicity State. During the leaving/maintenance periods, we study
the ergodicity of the embedded Markov chain. Let {te; e ∈ N} be a system
of time periods for either service completion or maintenance expiration. The
arbitrary vectors system Ke={C(te + ), X(te + )} form a Markov chain, which
is the queueing system’s embedded Markov chain. The name of its state space
is St={0, 1 and 2} ×N .

Theorem 3.1. If and only if λE(Sb) <B∗(λ), the embedded Markov chain
{Ke; e ∈ N} is ergodic.

Proof. The irreducible & aperidic Markov chain is {Ke; e ∈ N}. The suf-
ficient state of ergodicity showed by using Foster’s criterion . If there oc-
curs a non-negative function f (m) , m ∈ N and ϵ> 0, so that the average
drift χm=E[f(ke+1) − f(ke)|ke=m] all have a limit m ∈ N and χm ≤ − ϵ
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for everyone m ∈ N , except for a limited number of people m, then irreducible
and aperiodic Markov chain is ergodic.
We study the function f(m) =m, then we have

χm=

{
λE (Sb) + r −B∗ (λ) ; m= 1, 2, · · ·
λE (Sb)− s; m= 0

Ergodicity requires and is satisfied by the inequality λE(Sb) <B∗(λ). The
required state of ergodicity proved by using Kaplan’s condition. According to
Sennot (1983), the non ergodicity of the Markov chain {Ke; e ≥ 1} fulfils Ka-
plan’s requirement explicitly χm<∞;m ≥ 0 & there occurs m0 ∈ N such that
χm ≥ 0;m ≥ m0. Kaplan’s condition is satisfied in our case since h exists such
that rlm= 0 for m<l − h and l> 0, where B= (rlm) is {Ke; e ≥ 1} is one-step
transition matrix. The inequality λE(Sb) ≥ B∗(λ) suggests that the Markov
chain is non-ergodic. □

4. Steady State Distribution of the Server State

The probabilities for the procedure {L(t),t ≥ 0} are described

G0(t) =P{B(t) = 0, Y (t) = 0}
Ge (y, t) dy=P {B (t)= 0, Y (t)=e, y ≤ τ0 (t)<y + dy} ; t ≥ 0, y ≥ 0, e ≥ 1

He,b (y, t) dy=P {B (t)= 1, Y (t)=e, y ≤ τ1 (t)<y + dy} ; t ≥ 0, y ≥ 0, e ≥ 0

He,v (y, t) dy=P {B (t)= 2, Y (t)=e, y ≤ τ2 (t)<y + dy} ; t ≥ 0, y ≥ 0, e ≥ 0

The steady state condition λE(Sb) <B∗(λ) is assumed to be met, hence we
can set G0=limt→∞G0 (t) , Ge(y) =limt→∞Ge(t, y), He,b(y) =limt→∞He,b(t, y)
and He,v(y) =limt→∞He,v(t, y). The following steady state balancing equations
are obtained using the supplementary variables technique.

λG0=

∫ ∞

0

H0,v(y) µv(y)dy (1)

d

dy
Ge (y) + [λ+ γ (y)]Ge (y)= 0; y> 0, e ≥ 1 (2)

d

dy
H0, b (y) + [λ+ µb (y)]H0, b (y)= 0; y> 0 (3)

d

dy
He, b (y) + [λ+ µb (y)]He, b (y)=λHe−1, b (y) ; y> 0, e ≥ 1 (4)

d

dy
H0, v (y) + [λ+ µv (y)]H0, v (y)= 0; y> 0 (5)

d

dy
He, v (y) + [λ+ µv (y)]He, v (y)=λHe−1, v (y) ; y> 0, e ≥ 1 (6)

The stationary distributions of the amount of clients in the organization when
the server is idle (G0) in equation (1). Equation (2) guarantees that the amount
of clients (e) in the organization when the server is busy. Equation (3, 4) certifies
that the amount of clients in the organization when the server is busy with
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normal service rate. Equation (5, 6) shows about the amount of clients in the
organization when the server is busy with lower service rate.

The steady state boundary conditions can be used to explain the aforemen-
tioned set of equations.

Ge (0)=

∫ ∞

0

He, v (y)µv (y) dy + r

∫ ∞

0

He−1, b (y)µb (y) dy

+s

∫ ∞

0

He, b (y)µb (y) dy; e ≥ 1 (7)

H0, b(0) =λG0 +

∫ ∞

0

G1(y) γ(y)dy (8)

He, b (0)=

∫ ∞

0

Ge+1 (y) γ (y) dy + λ

∫ ∞

0

Ge (y) dy; e ≥ 1 (9)

H0, v(0) =s

∫ ∞

0

H0, b(y) µb(y)dy (10)

The state of normalisation is determined by

G0 +

∞∑
e=1

∫ ∞

0

Ge(y)dy +

∞∑
n=0

∫ ∞

0

He,b(y)dy +

∞∑
e=0

∫ ∞

0

He, v(y)dy= 1 (11)

Let’s look at the probability generating function (PGF) in more detail as
G(y, k) =

∑∞
e=1 k

eGe(y), G(0,k) =
∑∞

e=1 k
eGe(0), Hb(y, k) =

∑∞
n=0 k

nHe,b(y),
Hb(0,k) =

∑∞
e=0 k

nHe,b(0),Hv(y, k) =
∑∞

e=0 k
eHe,v(y),Hv(0,k) =

∑∞
e=0 k

eHe,v(0)
for |k| ≤ 1 and y> 0.

Theorem 4.1. Under the stability requirement λE(Sb) <B∗(λ), the stationary
distributions of the amount of clients in the organization when the server is idle
(G0), busy (G (k)), busy with normal service rate (Hb (k)), and busy with lower
service rate (Hv(k)) are

G(k) =
G0k[1−B∗(λ)]{[1− S∗

v (λ(1− k))] + S∗
v (λ)[1− (rk + s)S∗

b (λ(1− k))]}
S∗
v (λ){[k + (1− k)B∗(λ)](rk + s)S∗

b (λ(1− k))− k}
(12)

Hb(k) =

G0[1− S∗
b (λ(1− k))]{[1− S∗

v (λ(1− k))][k
+(1− k)B∗(λ)] + (1− k)B∗(λ)S∗

v (λ)}
S∗
v (λ)(1− k){[k + (1− k)B∗(λ)](rk + s)S∗

b (λ(1− k))− k}
(13)

Hv(k) =
G0[1− S∗

v (λ(1− k))]

S∗
v (λ)(1− k)

(14)

where G0=
S∗
v (λ)[B

∗(λ)−r−λE(Sb)]
s[λE(Sv)+B∗(λ)S∗

v (λ)]

Proof. The partial differential equations (2) to (6) are obtained by multiplying
(2) to (6) by the powers of k and summing over e.

∂G(y, k)

∂y
+ [λ+ γ(y)]G(y, k) = 0 (15)
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∂Hb(y, k)

∂y
+ [λ(1− k) + µb(y)]Hb(y, k) = 0 (16)

∂Hv(y, k)

∂y
+ [λ(1− k) + µv(y)]Hv(y, k) = 0 (17)

We get the following by solving the equations from (15) to (17)

G(y, k) =G(0,k)[1−B(y)]e−λy (18)

Hb(y, k) =Hb(0,k)[1− Sb(y)]e
−λ(1−k)y (19)

Hv(y, k) =Hv(0,k)[1− Sv(y)]e
−λ(1−k)y (20)

Multiplying (7) by power of k, summing over e from 1 to ∞, we obtain

G(0,k) =

∫ ∞

0

Hv(y, k)µv(y)dy + (rk + s)

∫ ∞

0

Hb(y, k)µb(y)dy −H0,v(0)− λG0

(21)
Multiplying from (8) to (10) by powers of k, summing over e from 0 to ∞, we
obtain

Hb(0,k) =
1

k

∫ ∞

0

G(y, k) γ(y)dy + λ

∫ ∞

0

G(y, k)dy + λG0 (22)

Hv(0,k) =H0,v(0) (23)

Commencing equation (5),

H0,v(y) =H0,v(0)[1− Sv(y)]e
−λy (24)

We get equation (1) by multiplying (24) by µv(y) and integrating with respect
to y from 0 to ∞ on both sides

H0,v(0) =
λG0

S∗
v (λ)

(25)

Substituting the equation (25) in equation (23), we get

Hv(0,k) =
λG0

S∗
v (λ)

(26)

By using equation (18) in equation (22), we get

Hb(0,k) =λG0 +

(
k + (1− k)B∗ (λ)

k

)
P (0,k) (27)

Further using equations from (19) to (20), and (25) in equation (21), we get

G(0,k) =Hv(0,k)S
∗
v (λ(1−k))+(rk+s)Hb(0,k)S

∗
b (λ(1−k))− λG0

S∗
v (λ)

−λG0 (28)

Using the equations (26) and (27), we get

G(0,k) =
λkG0

S∗
v (λ)

{
[1− S∗

v (λ (1− k))] + S∗
v (λ) [1− (rk + s)S∗

b (λ (1− k))]

(rk + s)S∗
b (λ (1− k)) [k + (1− k)B∗ (λ)]− k

}
(29)
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When we replace equation (29) with equation (27), we get

Hb(0,k) =

[
λG0 {[1− S∗

v (λ (1− k))] + S∗
v (λ) [1− (rk + s)S∗

b (λ (1− k))]}
S∗
v (λ) {(rk + s)S∗

b (λ (1− k)) [k + (1− k)B∗ (λ)]− k}

]
× [k + (1− k)B∗(λ)] + λG0 (30)

We obtain by substituting from equations (29) to (30) and equation (26) in (18)
to (20).

G(y, k) =

[
λG0k {[1− S∗

v (λ (1− k))] + S∗
v (λ) [1− (rk + s)S∗

b (λ (1− k))]}
S∗
v (λ) {(rk + s)S∗

b (λ (1− k)) [k + (1− k)B∗ (λ)]− k}

]
× [1−B(y)] e−λy

Hb(y, k) =

{[
λG0 {[1− S∗

v (λ (1− k))] + S∗
v (λ) [1− (rk + s)S∗

b (λ (1− k))]}
S∗
v (λ) {(rk + s)S∗

b (λ (1− k)) [k + (1− k)B∗ (λ)]− k}

]
× [k + (1− k)B∗ (λ)] + λG0} × [1− Sb(y)]e

−λ(1−k)y

Hv(y, k) =
λG0

S∗
v (λ)

[1− Sv(y)]e
−λ(1−k)y

When the above equations integrate with respect to y from 0 to ∞, the
requisite final solutions are obtained from equations (12) to (14). The idle
probability G is unknown and can be determined using the normalising state
G0 +G(1)+Hb(1)+Hv(1) = 1. Let U(k) =G0 +G(k)+ k [Hb (k) +Hv (k)] and
V (k) =G0 + G(k) +Hb(k) +Hv(k) denotes the PGF for the amount of clients
in the system and orbit at a given point in time. □

Theorem 4.2. The probability generating function of the system size and orbit
size distribution at a stationary point of period in stability state λE(Sb) <B∗(λ)
is

U(k) =


G0s {[1− S∗

v (λ (1− k))] [k + (1− k)B∗ (λ)]
+ (1− k)B∗ (λ)S∗

v (λ)}S∗
b (λ (1− k))

S∗
v (λ) {(rk + s)S∗

b (λ (1− k)) [k + (1− k)B∗ (λ)]− k}

 (31)

V (k) =


G0[1− rS∗

b (λ(1− k)]{[1− S∗
v (λ(1− k))][k + (1− k)B∗(λ)]

+(1− k)B∗(λ)S∗
v (λ)}

S∗
v (λ) {(rk + s)S∗

b (λ (1− k)) [k + (1− k)B∗ (λ)]− k}

 (32)

where G0 is specified in equation (15).

Proof. Let us consider the probabaility genrating function for the amount of
clients in the system is U(k) =G0 +G(k) + k [Hb (k) +Hv (k)] and the PGF for
the amount of clients in the orbit is V (k) =G0 + G(k) + Hb(k) + Hv(k). We
get the equation (31) and (32) by using the equations from (12) to (15) for the
above consideration. □
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5. Performance Measures

Under steady-state conditions, we accomplish specific performance measure-
ments for the system. Let I denote the steady state probability that the server
will be idle during the retrial period, E the steady state probability that the
server will be busy, F the steady state probability that the server will be on
maintenance, and L the steady state probability that the server will be idle or
on maintenance. B0 is the steady state probability of the system being empty
while the server is down for maintenance, M is the steady state likelihood of
the system being empty, and J is the steady state probability of the orbit being
empty.

I=G(1) =
[1−B∗(λ)][λE(Sv) + S∗

v (λ)(λE(Sb) + r)]

s[λE(Sv) +B∗(λ)S∗
v (λ)]

E=Hb(1) =
λE(Sb)

s

F=Hv(1) =
λE(Sv)[B

∗(λ)− r − λE(Sb)]

s[λE(Sv) +B∗(λ)S∗
v (λ)]

L=G0 +G(1) +Hv(1) = 1− λE(Sb)

s

B0=Hv(0) =
[1− S∗

v (λ)][B
∗(λ)− r − λE(Sb)]

s[λE(Sv) +B∗(λ)S∗
v (λ)]

M=G0 +B0=
[B∗(λ)− r − λE(Sb)]

s[λE(Sv) +B∗(λ)S∗
v (λ)]

S=G0 +B0 +H0=
[1− rS∗

b (λ)][B
∗(λ)− r − λE(Sb)]

s2[λE(Sv) +B∗(λ)S∗
v (λ)]S

∗
b (λ)

The averge amount of jobs in the organization is found by differentiating (32)
with respect to k and evaluating at k = 1.

Ls=λE (Sb) +
λ2E

(
S2
b

)
+ 2λE (Sb) [1−B∗ (λ)] + 2r [λE (Sb) + 1−B∗ (λ)]

2 [B∗ (λ)− r − λE (Sb)]

+
λ2E(S2

v) + 2λE(Sv)[1−B∗(λ)]

2[λE(Sv) +B∗(λ)S∗
v (λ)]

The average amount of jobs in the orbit is found by differentiating (32) with
respect to k and evaluating at k = 1.

Lq=
λ2E(S2

b ) + 2λE(Sb)(1 + r −B∗(λ)) + 2r[1−B∗(λ)]

2[B∗(λ)− r − λE(Sb)]

+
s[λ2E(S2

v) + 2λE(Sv)(1−B∗(λ))] + 2rλE(Sb)[λE(Sv) +B∗(λ)S∗
v (λ)]

2s[λE(Sv) +B∗(λ)S∗
v (λ)]
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6. Special Cases

In this paper, we look at a few exceptional situations of our model that are
compatible with the existing literature.
Case 1. With a single working vacation B∗(λ) → 1, r= 0 and s= 1, the model
is reduced to the M/G/1 queue. The PGF of the amount of clients in the
organization U(k), the idle probability G0, and the average organization size Ls

can be rewritten in this case, and the outcomes accord with Zhang and Hou
(2012).

G0=
[1− λE(S)]S∗

v (λ)

λE(Sv) + S∗
v (λ)

U(k) =
[1− λE(S)]{[1− S∗

v (λ− λk)] + (1− k)S∗
v (λ)}S∗

b (λ− λk)

[λE(Sv) + S∗
v (λ)][S

∗
b (λ− λk)− k]

Ls=λE(Sb) +
λ2E(S2

b )

2[1− λE(Sb)]
+

λ2E(S2
v)

2[λE(Sv) + S∗
v (λ)]

Case 2. The M/G/1 queueing technique is used to simplify the conceptB∗ (λ) →
1, r = 0, s= 1 and S∗

v (λ) = 1. The PGF of the amount of clients in organization
U(k), the idle probability G0 and the average organization size Ls in this case
may be simplified to the following formulations, which are regular with the well
known P-K formula [Shortle et al. (2018)].

G0= 1− λE(S)

U(k) =
[1− λE(S)](1− k)S∗(λ− λk)

S∗(λ− λk)− k

Ls=λE(S) +
λ2E(S2)

2[1− λE(S)]

7. Numerical Illustrations

We exhibit algebraic results in Matlab to demonstrate the effect of numerous
constraints on the main performance of our organization, using arbitrary values
for arrival rate λ, retrial rate γ, busy with normal service rate µb , busy with
lower service rate µv and unsatisfied client arrival rate r to satisfy the stability
constraint. Two dimensional diagrams are drawn in Figures 2 through 6.

Figure 2 shows how the mean system size Ls increases as the unsatisfied client
arrival rate r is increased while the normal service rate µb and maintenance
service rate µv are varied. As displayed in Figure 3, the idle probability G0

reduces as the unsatisfied customer arrival rate r is increased by adjusting the
normal service rate µb and the maintenance service rate µv. Figure 4 shows
how increasing the retrial rate lowers the idle probability G0 while changing the
normal service rate µb and the maintenance service rate µv. Figure 5 shows how
the traffic intensity ρ reduces as the regular service rate µb is increased while
the retrial rate γ is varied.
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Figure 2. r versus Ls

Figure 3. r versus G0

Figure 4. γ versus G0
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Figure 5. ρ versus µb

Figure 6 shows how the traffic intensity ρ reduces as the maintenance service
rate µv is increased while the retrial rate is varied. Figures 7 through 10 show
three-dimensional graphs. As shown in Figure 7, the surface shows an increased
trend for the mean system size Ls as the regular service rate µb and maintenance
service rate µv increase. Figure 8 shows a lower trend for the idle probability G0

as the normal service rate µb and the maintenance service rate µv are increased.

Figure 6. µv versus ρ
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Figure 7. µb, µv versus Ls

Figure 8. µb, µv versus G0

Figure 9. µv, γ versus Ls
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Figure 10. µv, γ versus G0

As illustrated in Figure 9, the surface shows a declining trend for the mean
system size Ls as the maintenance service rate µv and the retrial rate increase.
The surface in Figure 10 shows an increased trend for the idle probability G0 as
the maintenance service rate µv and the retrial rate increase.

8. Conclusion

In the present work we have established a non Markovian M/G/1 queue of
retrial policy, disappointed clients and variant types of service rates which is
illustrated by an example of media access function in wireless networks. The ex-
plicit expressions of this model were discovered using PGF, and the total amount
of clients in the organization, traffic intensity, and orbit were calculated using
the supplementary variable technique. Some special cases and performance mea-
sures were also analyzed. The dissatiesfied clients parameter affect the system
performance slightly. Furthermore, the numerical and graphical representations
of the effects of variables utilised to portray system states are shown.
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