Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. RS-2023-00207947), 보건복지부의 재원으로 한국 보건산업진흥원의 보건의료기술연구개발사업 지원(HI22C1496) 및 서울여자대학교 학술연구비의 지원(2023-0112)을 받아 수행되었으며 이에 감사드립니다.
References
- H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjo mataram, I. Soerjomataram, A. Jemal, and F. Bray, "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," A Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209-249, 2021. https://doi.org/10.3322/caac.21660
- Z. Du, W. Chen, Q. Xia, O. Shi, and Q. Chen, "Trends and projections of kidney cancer incidence at the global and national levels, 1990-2030: A Bayesian age-period-cohort modeling study," Biomarker Research, vol. 16, pp. 8, 2020.
- S. Tangal, K. Onal, M. Yigman and A.H. Haliloglu, "Relation of neutrophil lymphocyte ratio with tumor characteristics in localized kidney tumors." The New Journal of Urology, vol. 13, no. 1, pp. 12-15, 2018.
- M. Sun, F. Abdollah, M. Bianchi, Q. D. Trinh, C. Jeldres, R. Thuret, Z. Tian, S.F. Shariat, F. Montorsi, P. Perrotte, and P.I. Karakiewicz, "Treatment management of small renal masses in the 21st century: A paradigm shift." Annals of Surgial. Oncology, vol. 19, pp. 2380-2387, 2012. https://doi.org/10.1245/s10434-012-2247-0
- G. Yang, J. Gu, Y. Chen, W. Liu, L. Tang, H. Shu, and C. Toumoulin, "Automatic kidney segmentation in ct images based on multi-atlas image registration." in Proc, of the 36th Annual Int. Conf, of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, pp. 5538-5541, 2014.
- D.K. Kim, Y. Jang, J. Lee, H. Hong, K.H. Kim, T.Y. Shin, D.C. Jung, Y.D. Choi, and K.H. Rha, "Two-year Analys is for Predicting Renal Function and Contralateral Hypertrophy after Robot-assisted Partial Nephrectomy: A Three-dimensional Segmentation Technology Study." International Journal of Urology, Vol. 22, pp. 1105-1111, 2015. https://doi.org/10.1111/iju.12913
- J. Lee, H. Hong, K.H. Rha, "Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images" Journal of the Korea Computer Graphics Society, 22(4) 11-19. doi: 10.15701/kcgs.2016.22.4.11, 2016.
- H. Wei, Q. Wang, W. Zhao, M. Zhang, K. Yuan, and Z. Li, "Two-phase Framework for Automatic Kidney and Kidney Tumor Segmentation.'' 2019 Kidney Tumor Segmentation Challenge: KiTS19, 2019.
- X. Xie, L. Li, S. Lian, S. Chen, and Z. Luo, "SERU: A cascaded SE-ResNeXT U-Net for kidney and tumor segmentation." Concurrency and Computation: Practice and Experience Volume 32, Issue 14, 2020
- J. Wen, Z. Li, Z. Shen, Y. Zheng, and S. Zheng, "Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT images." Kidney and Kidney Tumor Segmentation. KiTS 2021. Lecture Notes in Computer Science, vol 13168. Springer, Cham. 2022.
- F. Isensee, and K.H. Maier-Hein, "An attempt at beating the 3D U-Net." ArXiv abs/1908.02182, 2019.
- X. Hou, C. Xie, F. Li, and Y. Nan, "Cascaded Semantic Segmentation for Kidney and Tumor." 10.24926/548719.002., 2019.
- J. MA, "Solution to the Kidney Tumor Segmentation Challenge 2019." 10.24926/548719.005, 2019.
- M.J. Willemink, W.A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey, L.R. Folio, R.M. Summers, D.L. Rub in, and M.P. Lungren, "Preparing medical imaging data for machine learning." Radiology 295, 2020.
- S.Y. Huang, W.L. Hsu, R.J. Hsu, and D.W. Liu, "Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey." Diagnostics 12, 2022.
- Z. Yang, P. Xu, Y. Yang, and B.K. Bao, "A Densely Connected Network Based on U-Net for Medical Image Segmentation." ACM Trans Multimed Comput Commun Appl 17, 2021.
- L. Liu, J.M. Wolterink, C. Brune, and R.N.J. Veldhuis, "Anatomy-aided deep learning for medical image segmentation: A review." Phys Med Biol 66, 2021.
- D. Karimi, S.D. Vasylechko, and A. Gholipour. "Convolution-Free Medical Image Segmentation Using Transformers." Leet Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 12901, 2021.
- Y. Wang, Y. Zhang, J. Tian, C. Zhong, Z. Shi, Y. Zhang, and Z. He, "Double-Uncertainty Weighted Method for Semi-supervised Learning." International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020.
- J. Wang, and T. Lukasiewicz, "Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation," in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA pp. 182-190, 2022.
- Y. Tang, S. Wang, Y. Qu, Z. Cui, and W. Zhang, "Consistency and adversarial semi-supervised learning for medical image segmentation." Computers in Biology and Medicine, Volume 161, 2023.
- L. Hu, J. Li, X. Peng, J. Xiao, B. Zhan, C. Zu, X. Wu, J. Zhou, and Y. Wang, "Semi-supervised NPC segmentation with uncertainty and attention guided consistency." Knowledge-Based Systems, Volume 239, 2022.
- A. Tarvainen, and H. Valpola, "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." Adv Neural Inf Process Syst 2017-December, 2017.
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Vol.9351, pp. 234-241, 2015.
- F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F.Jaeger, S. Kohl, J. Wasserthal, G. Koehler, T. Norajitra, S. Wirkert, and K.H. Maier-Hein, "nnU-Net: Self-adapting framework for u-net-based medical image segmentation." arXiv preprint arXiv:1809.10486, 2018.
- E. Yang, C. K. Kim, Y. Guan, B. Koo, and J. Kim, "3D multi-scale residual fully convolutional neural network for segmentation of extremely large-sized kidney tumor." Computer Methods and Programs in Biomedicine, Volume 215, 2022.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 618-626, 2017.