DOI QR코드

DOI QR Code

Simulating tentacle Creature with External Magnetism for Animatronics

외부 자력을 이용한 촉수 생명체 애니매트로닉스 시뮬레이션

  • Received : 2023.07.12
  • Accepted : 2023.10.23
  • Published : 2023.12.01

Abstract

The control technology of animatronics is an interesting topic explored in various fields, including engineering, medicine, and art, with ongoing research efforts. The conventional method for controlling the movement of animatronics is to use electric motors installed inside the body. However, this method is difficult to apply when expressing a narrow space inside the body. In this study, a method of using external forces instead of installing mechanical devices inside the body was proposed to control the movement of a thin and long tentacle organism. Specifically, in this study, the joint body of animatronics was made of magnetic metal material so that it could be affected by the force of an externally installed electromagnet. The strength of the electromagnet was controlled by a PID controller to enable real-time control of the position of the animatronics body. In addition, the magnet was made to rotate, and the speed of rotation was changed to create various movements. Through virtual environment simulations, our experiments demonstrate the superiority of the proposed method, showcasing real-time control by users and the creation of animations in various styles.

애니매트로닉스 제어 기술은 공학, 의학, 예술 등 여러 학문 분야에서 흥미로운 주제이며 관련 연구가 활발히 진행되고 있다. 애니매트로닉스의 움직임을 제어하는 일반적인 방법은 몸체 내부에 장착된 전동 모터를 사용하는 것이다. 하지만 이러한 방식은 몸체 내부의 공간이 좁을 경우 적용하기 어렵다. 본 연구에서는 몸체가 가늘고 긴 촉수 생명체의 움직임을 제어하기 위해 몸체 내부에 기계 장치를 장착하는 대신 외부 자력을 이용하는 방법을 제안한다. 구체적으로 본 연구에서는 애니매 트로닉스의 관절체 몸체를 자성이 있는 금속 소재로 만들어 외부에 설치된 전자석의 인력에 영향을 받도록 하였다. 그리고 전자석의 세기를 PID 제어기로 제어하여 애니매트로닉스 몸체의 위치를 실시간으로 제어할 수 있도록 하였다. 또한 자석이 회전 운동을 하도록 하고 회전의 속도를 변화시켜 다양한 움직임을 연출할 수 있도록 하였다. 본 연구의 실험은 가상 환경에 구현하여 시뮬레이션을 통해 수행되었다. 사용자에 의한 실시간 제어의 결과뿐만 아니라 다양한 스타일의 애니메이션 생성 방법 및 결과를 제시하여 그 효용성을 증명하였다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국 연구 재단의 지원을 받아 수행된 연구(No. 2021R1F1A1048002) 입니다.

References

  1. B. Cotter, The 1939-1940 New York World's Fair. Arcadia Publishing, 2009.
  2. C. Svonkin, "A southern california boyhood in the simu-southland shadows of walt disney's enchanted tiki room," Disneyland and culture: Essays on the parks and their in-fluence, pp. 107-121, 2011.
  3. E. Jochum, P. Millar, and D. Nunez, "Sequence and chance: Design and control methods for entertainment robots," Robotics and Autonomous Systems, vol. 87, pp. 372-380,2017. https://doi.org/10.1016/j.robot.2016.08.019
  4. M. T. Pope, S. Christensen, D. Christensen, A. Simeonov, G. Imahara, and G. Niemeyer, "Stickman: Towards a human scale acrobatic robot," in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.2134-2140.
  5. G. Venture and D. Kulic, "Robot expressive motions: a survey of generation and evaluation methods," ACM Transactions on Human-Robot Interaction (THRI), vol. 8, no. 4, pp.1-17, 2019. https://doi.org/10.1145/3344286
  6. B. Chen, Y. Hu, L. Li, S. Cummings, and H. Lipson, "Smile like you mean it: Driving animatronic robotic face with learned models," in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 2739-2746.
  7. M. M. Porter, N. Ravikumar, F. Barthelat, and R. Martini, "3d-printing and mechanics of bio-inspired articulated and multi-material structures," Journal of the mechanical behavior of biomedical materials, vol. 73, pp. 114-126, 2017. https://doi.org/10.1016/j.jmbbm.2016.12.016
  8. S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. For-berg, R. W. Sumner, W. Matusik, and B. Bickel, "Computational design of mechanical characters," ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1-12, 2013. https://doi.org/10.1145/2461912.2461953
  9. V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and S. Coros, "Interactive design of 3d-printable robotic creatures," ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1-9, 2015. https://doi.org/10.1145/2816795.2818137
  10. V. Megaro, E. Knoop, A. Spielberg, D. I. Levin, W. Ma-tusik, M. Gross, B. Thomaszewski, and M. Bacher, "Designing cable-driven actuation networks for kinematic chains and trees," in Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, 2017, pp. 1-10.
  11. J. M. Bern, K.-H. Chang, and S. Coros, "Interactive design of animated plushies," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-11, 2017. https://doi.org/10.1145/3072959.3073700
  12. H. Xu, E. Knoop, S. Coros, and M. B ̈acher, "Bend-it: design and fabrication of kinetic wire characters," ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1-15, 2018. https://doi.org/10.1145/3272127.3275089
  13. S. Zimmermann, R. Poranne, J. M. Bern, and S. Coros, "Pup-petmaster: Robotic animation of marionettes," ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1-11, 2019. https://doi.org/10.1145/3306346.3323003
  14. G. Maloisel, E. Knoop, C. Schumacher, and M. Bacher, "Automated routing of muscle fibers for soft robots," IEEE Transactions on Robotics, vol. 37, no. 3, pp. 996-1008, 2021. https://doi.org/10.1109/TRO.2020.3043654
  15. L. Yang and L. Zhang, "Motion control in magnetic micro-robotics: From individual and multiple robots to swarms," Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 509-534, 2021. https://doi.org/10.1146/annurev-control-032720-104318
  16. S. H. Kim and K. Ishiyama, "Magnetic robot and manipulation for active-locomotion with targeted drug release," IEEE/ASME Transactions On Mechatronics, vol. 19, no. 5, pp. 1651-1659, 2013.
  17. A. Li, H. Li, Z. Li, Z. Zhao, K. Li, M. Li, and Y. Song, "Programmable droplet manipulation by a magnetic-actuated robot," Science advances, vol. 6, no. 7, p. eaay5808, 2020.
  18. X. Wei, M.-L. Jin, H. Yang, X.-X. Wang, Y.-Z. Long, and Z. Chen, "Advances in 3d printing of magnetic materials: Fabrication, properties, and their applications," Journal of Advanced Ceramics, vol. 11, no. 5, pp. 665-701, 2022 https://doi.org/10.1007/s40145-022-0567-5
  19. A. Maciel, T. Halic, Z. Lu, L. P. Nedel, and S. De, "Using the physx engine for physics-based virtual surgery with force feedback," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, no. 3, pp. 341-353, 2009. https://doi.org/10.1002/rcs.266
  20. B. Thomaszewski, A. Gumann, S. Pabst, and W. Strasser, "Magnets in motion," ACM Transactions on Graphics (TOG), vol. 27, no. 5, pp. 1-9, 2008. https://doi.org/10.1145/1409060.1409115
  21. S.-W. Kim, S. Y. Park, and J. Han, "Magnetization dynamics for magnetic object interactions," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-13, 2018. https://doi.org/10.1145/3197517.3201402
  22. S.-w. Kim and J. Han, "Fast stabilization of inducible magnet simulation," in SIGGRAPH Asia 2022 Conference Papers, 2022, pp. 1-8.