DOI QR코드

DOI QR Code

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology) ;
  • Zahoor Hussain (Department of Civil and Environmental Engineering, North Dakota State University) ;
  • Muhammad Akbar (Department of Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Sciences) ;
  • Bassam A. Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Zhibin Lin (Department of Civil and Environmental Engineering, North Dakota State University)
  • 투고 : 2023.01.30
  • 심사 : 2023.10.27
  • 발행 : 2023.11.25

초록

The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

키워드

과제정보

This research is jointly supported by the China Postdoctoral Science Foundation (No. 2018M631807), National Natural Science Foundation of China (Grant No. 51578202), Fundamental Research Funds for the Central Universities (Nos. N160103002, N170108029), National Natural Science Foundation of Liaoning (No. 201702281). The authors further acknowledge the support partially provided by USDOTs (693JK318500010CAAP and 693JK32110003POTA). The results, discussion, and opinions reflected in this paper are those of the authors only and do not necessarily represent those of the sponsors. The research funds above are greatly appreciated by the authors. Author can provide training and test data sets for both Cases in case of intrusted reader or researchers request us.

참고문헌

  1. Abbas, N., Yousaf, M., Akbar, M., Saeed, M.A., Huali, P. and Hussain, Z. (2022), "An experimental investigation and computer modeling of direct tension pullout test of reinforced concrete cylinder", 7(3), p. 77.
  2. Abbas, N., Umar, T., Salih, R., Akbar, M., Hussain, Z. and Haibei, X. (2023), "Structural Health Monitoring of Underground Metro Tunnel by Identifying Damage Using ANN Deep Learning", 13(3), p. 1332. https://doi.org/10.3390/app13031332
  3. Ahmed, S., Hussain, A., Hussain, Z., Pu, Z., Ostrowski, K.A. and Walczak, R. (2021), "Effect of carbon black and hybrid steel-polypropylene fiber on the mechanical and self-sensing characteristics of concrete considering different coarse aggregates' sizes", Materials, 14(23), p. 7455. https://doi.org/10.3390/ma14237455
  4. Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput. Applicat., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1
  5. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
  6. Bocciarelli, M. and Ranzi, G. (2018), "An inverse analysis approach for the identification of the hygro-thermo-chemical model parameters of concrete", Int. J. Mech. Sci., 138, 368-382. https://doi.org/10.1016/j.ijmecsci.2018.01.035
  7. Chen, H.P. and Ni, Y.Q. (2018), "Vibration-Based Damage Identification Methods", In: Structural Health Monitoring of Large Civil Engineering Structures, pp. 155-193. https://doi.org/10.1002/9781119166641.ch7
  8. Chen, R., Li, J., Qian, Y., Peng, R., Jiang, S., Hu, C. and Zhao, Z. (2019), "An effective inverse procedure for identifying DEMparameters of rock-like materials", Mathe. Probl. Eng., 2019. https://doi.org/10.1155/2019/6969546
  9. Contursi, T., Messina, A. and Williams, E.J. (1998), "A multiple-damage location assurance criterion based on natural frequency changes", J. Vib. Control, 4(5). 619-633. https://doi.org/10.1177/107754639800400505
  10. Deng, W., Yao, R., Zhao, H., Yang, X. and Li, G. (2019), "A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm", Soft Computing, 23, 2445-2462. https://doi.org/10.1007/s00500-017-2940-9
  11. Dong, C.Z. and Catbas, F.N. (2021), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monitor., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
  12. Dou, S.Q., Li, J.J. and Kang, F. (2019), "Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model", Water Sci. Eng., 12(3), 188-195. https://doi.org/10.1016/j.wse.2019.09.002
  13. Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press.
  14. Hussain, Z., Pu, Z., Hussain, A., Ahmed, S., Shah, A.U., Ali, A. and Ali, A. (2021), "Effect of fiber dosage on water permeability using a newly designed apparatus and crack monitoring of steel fiber-reinforced concrete under direct tensile loading", Struct. Health Monitor., 21(5), 2083-2096. https://doi.org/10.1177/14759217211052855
  15. Kang, F., Li, J.S. and Li, J.J. (2016), "System reliability analysis of slopes using least squares support vector machines with particle swarm optimization", Neurocomputing, 209, 46-56. https://doi.org/10.1016/j.neucom.2015.11.122
  16. Kang, F., Liu, J., Li, J. and Li, S. (2017), "Concrete dam deformation prediction model for health monitoring based on extreme learning machine", Struct. Control Health Monitor., 24(10), e1997. https://doi.org/10.1002/stc.1997
  17. Kang, F., Wu, Y., Li, J. and Li, H. (2021), "Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model", Adv. Eng. Inform., 49, 101348. https://doi.org/10.1016/j.aei.2021.101348
  18. Kaveh, A. and Laknejadi, K. (2013), "A new multi-swarm multi-objective optimization method for structural design", Adv. Eng. Software, 58, 54-69. https://doi.org/10.1016/j.advengsoft.2013.01.004
  19. Khatir, S., Belaidi, I., Khatir, T., Hamrani, A., Zhou, Y.L. and Wahab, M.A. (2017), "Multiple damage detection in composite beams using Particle Swarm Optimization and Genetic Algorithm", Mechanics, 23(4), 514-521. https://doi.org/10.5755/j01.mech.23.4.15254
  20. Kohiyama, M., Oka, K. and Yamashita, T. (2020), "Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network", Struct. Control Health Monitor., 27(8), e2552. https://doi.org/10.1002/stc.2552
  21. Le, V. and Caracoglia, L. (2020), "A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads", Comput. Struct., 231, 106208. https://doi.org/10.1016/j.compstruc.2020.106208
  22. Lederman, G., Wang, Z., Bielak, J., Noh, H., Garrett, J.H., Chen, S., Kovacevic, J., Cerda, F. and Rizzo, P. (2014), "Damage quantification and localization algorithms for indirect SHM of bridges", Proceedings of International Conference on Bridge Maintenance, Safety Management, Shanghai, China, pp. 640-647. https://doi.org/10.13140/2.1.3308.8645
  23. Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A. and Hemez, F. (2006), "Identification of response surface models using genetic programming", Mech. Syst. Signal Process., 20(8), 1819-1831. https://doi.org/10.1016/j.ymssp.2005.12.003
  24. Liu, K., Law, S.S. and Zhu, X.Q. (2017), "System parameter identification from projection of inverse analysis", Journal of Sound and Vibration, 396, 83-107. https://doi.org/10.1016/j.jsv.2017.02.042
  25. Majumdar, A., Maiti, D.K. and Maity, D. (2012), "Damage assessment of truss structures from changes in natural frequencies using ant colony optimization", Appl. Mathe. Computat., 218(19), 9759-9772. https://doi.org/10.1016/j.amc.2012.03.031
  26. Mirjalili, S. (2023), The Genetic Algorithm (GA): Selection + Crossover + Mutation + Elitism, MATLAB Central File Exchange[CP]. Retrieved July 15, 2023
  27. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
  28. Nguyen-Tuan, L., Koenke, C., Bettzieche, V. and Lahmer, T. (2018), "Uncertainty assessment in the results of inverse problems: applied to damage detection in masonry dams", Int. J. Reliabil. Safety, 12(1-2), 2-23. https://doi.org/10.1504/IJRS.2018.092498
  29. Nhamage, I.A., Lopez, R.H. and Miguel, L.F.F. (2016), "An improved hybrid optimization algorithm for vibration based-damage detection", Adv. Eng. Software, 93, 47-64. https://doi.org/10.1016/j.advengsoft.2015.12.003
  30. Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Safety, 25(1), 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
  31. Pan, J., Xu, Y. and Jin, F. (2015), "Seismic performance assessment of arch dams using incremental nonlinear dynamic analysis", Eur. J. Environ. Civil Eng., 19(3), 305-326. https://doi.org/10.1080/19648189.2014.960950
  32. Pandit, D., Zhang, L., Chattopadhyay, S., Lim, C.P. and Liu, C. (2018), "A scattering and repulsive swarm intelligence algorithm for solving global optimization problems", Knowled.-Based Syst., 156, 12-42. https://doi.org/10.1016/j.knosys.2018.05.002
  33. Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization", Mech. Syst. Signal Process., 22(4), 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
  34. Rajasekaran, S. and Amalraj, R. (2002), "Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron", Computers & structures, 80(31), 2495-2505. https://doi.org/10.1016/S0045-7949(02)00213-4
  35. Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Industr. Eng. Computat., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004
  36. Rao, R.V. and More, K.C. (2017), "Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm", Energy Convers. Manage., 140, 24-35. https://doi.org/10.1016/j.enconman.2017.02.068
  37. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
  38. Stojanovic, B., Milivojevic, M., Ivanovic, M., Milivojevic, N. and Divac, D. (2013), "Adaptive system for dam behavior modeling based on linear regression and genetic algorithms", Adv. Eng. Software, 65, 182-190. https://doi.org/10.1016/j.advengsoft.2013.06.019
  39. Taheri, F., Ghasemi, M.R. and Dizangian, B. (2020), "Practical optimization of power transmission towers using the RBF-based ABC algorithm", Struct. Eng. Mech., Int. J., 73(4), 463-479. https://doi.org/10.12989/sem.2020.73.4.463
  40. Teng, S., Chen, G., Yan, Z., Cheng, L. and Bassir, D. (2023), "Vibration-based structural damage detection using 1-D convolutional neural network and transfer learning", Struct. Health Monitor., 22(4), 2888-2909. https://doi.org/10.1177/14759217221137931
  41. Trinh, M.C. and Jun, H. (2021), "Stochastic bending and buckling analysis of laminated composite plates using Latin hypercube sampling", Eng. Comput., 39(2), 1459-1497. https://doi.org/10.1007/s00366-021-01544-y
  42. Tsihrintzis, G.A., Virvou, M., Sakkopoulos, E. and Jain, L.C. eds. (2019), Machine Learning Paradigms: Applications of Learning and Analytics in Intelligent Systems, Vol. 1, Springer. https://doi.org/10.1007/978-3-030-15628-2
  43. Vorel, J. and Kabele, P. (2019), "Inverse analysis of traction-separation relationship based on sequentially linear approach", Comput. Struct., 212, 125-136. https://doi.org/10.1016/j.compstruc.2018.10.005
  44. Wang, W., Kuang, Y., Li, S. and Ni, X. (2012), "Back analysis of dam parameter under seismic action", Procedia Eng., 28, 429-433. https://doi.org/10.1016/j.proeng.2012.01.745
  45. Yang, L., Su, H. and Wen, Z. (2019), "Improved PLS and PSO methods-based back analysis for elastic modulus of dam", Adv. Eng. Software, 131, 205-216. https://doi.org/10.1016/j.advengsoft.2019.02.005
  46. Yuan, Q., Zhai, S., Wu, L., Chen, P., Zhou, Y. and Zuo, Q. (2019), "Blasting vibration velocity prediction based on least squares support vector machine with particle swarm optimization algorithm", Geosyst. Eng., 22(5), 279-288. https://doi.org/10.1080/12269328.2019.1607570
  47. Zhang, A. and Zhang, L. (2004), "RBF neural networks for the prediction of building interference effects", Comput. Struct., 82(27), 2333-2339. https://doi.org/10.1016/j.compstruc.2004.05.014
  48. Zhang, L., Wang, J.T., Xu, Y.J., He, C.H. and Zhang, C.H. (2020), "A procedure for 3D seismic simulation from rupture to structures by coupling SEM and FEM", Bull. Seismol. Soc. Am., 110(3), 1134-1148. https://doi.org/10.1785/0120190289