Acknowledgement
This research is jointly supported by the China Postdoctoral Science Foundation (No. 2018M631807), National Natural Science Foundation of China (Grant No. 51578202), Fundamental Research Funds for the Central Universities (Nos. N160103002, N170108029), National Natural Science Foundation of Liaoning (No. 201702281). The authors further acknowledge the support partially provided by USDOTs (693JK318500010CAAP and 693JK32110003POTA). The results, discussion, and opinions reflected in this paper are those of the authors only and do not necessarily represent those of the sponsors. The research funds above are greatly appreciated by the authors. Author can provide training and test data sets for both Cases in case of intrusted reader or researchers request us.
References
- Abbas, N., Yousaf, M., Akbar, M., Saeed, M.A., Huali, P. and Hussain, Z. (2022), "An experimental investigation and computer modeling of direct tension pullout test of reinforced concrete cylinder", 7(3), p. 77.
- Abbas, N., Umar, T., Salih, R., Akbar, M., Hussain, Z. and Haibei, X. (2023), "Structural Health Monitoring of Underground Metro Tunnel by Identifying Damage Using ANN Deep Learning", 13(3), p. 1332. https://doi.org/10.3390/app13031332
- Ahmed, S., Hussain, A., Hussain, Z., Pu, Z., Ostrowski, K.A. and Walczak, R. (2021), "Effect of carbon black and hybrid steel-polypropylene fiber on the mechanical and self-sensing characteristics of concrete considering different coarse aggregates' sizes", Materials, 14(23), p. 7455. https://doi.org/10.3390/ma14237455
- Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput. Applicat., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
- Bocciarelli, M. and Ranzi, G. (2018), "An inverse analysis approach for the identification of the hygro-thermo-chemical model parameters of concrete", Int. J. Mech. Sci., 138, 368-382. https://doi.org/10.1016/j.ijmecsci.2018.01.035
- Chen, H.P. and Ni, Y.Q. (2018), "Vibration-Based Damage Identification Methods", In: Structural Health Monitoring of Large Civil Engineering Structures, pp. 155-193. https://doi.org/10.1002/9781119166641.ch7
- Chen, R., Li, J., Qian, Y., Peng, R., Jiang, S., Hu, C. and Zhao, Z. (2019), "An effective inverse procedure for identifying DEMparameters of rock-like materials", Mathe. Probl. Eng., 2019. https://doi.org/10.1155/2019/6969546
- Contursi, T., Messina, A. and Williams, E.J. (1998), "A multiple-damage location assurance criterion based on natural frequency changes", J. Vib. Control, 4(5). 619-633. https://doi.org/10.1177/107754639800400505
- Deng, W., Yao, R., Zhao, H., Yang, X. and Li, G. (2019), "A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm", Soft Computing, 23, 2445-2462. https://doi.org/10.1007/s00500-017-2940-9
- Dong, C.Z. and Catbas, F.N. (2021), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monitor., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
- Dou, S.Q., Li, J.J. and Kang, F. (2019), "Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model", Water Sci. Eng., 12(3), 188-195. https://doi.org/10.1016/j.wse.2019.09.002
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press.
- Hussain, Z., Pu, Z., Hussain, A., Ahmed, S., Shah, A.U., Ali, A. and Ali, A. (2021), "Effect of fiber dosage on water permeability using a newly designed apparatus and crack monitoring of steel fiber-reinforced concrete under direct tensile loading", Struct. Health Monitor., 21(5), 2083-2096. https://doi.org/10.1177/14759217211052855
- Kang, F., Li, J.S. and Li, J.J. (2016), "System reliability analysis of slopes using least squares support vector machines with particle swarm optimization", Neurocomputing, 209, 46-56. https://doi.org/10.1016/j.neucom.2015.11.122
- Kang, F., Liu, J., Li, J. and Li, S. (2017), "Concrete dam deformation prediction model for health monitoring based on extreme learning machine", Struct. Control Health Monitor., 24(10), e1997. https://doi.org/10.1002/stc.1997
- Kang, F., Wu, Y., Li, J. and Li, H. (2021), "Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model", Adv. Eng. Inform., 49, 101348. https://doi.org/10.1016/j.aei.2021.101348
- Kaveh, A. and Laknejadi, K. (2013), "A new multi-swarm multi-objective optimization method for structural design", Adv. Eng. Software, 58, 54-69. https://doi.org/10.1016/j.advengsoft.2013.01.004
- Khatir, S., Belaidi, I., Khatir, T., Hamrani, A., Zhou, Y.L. and Wahab, M.A. (2017), "Multiple damage detection in composite beams using Particle Swarm Optimization and Genetic Algorithm", Mechanics, 23(4), 514-521. https://doi.org/10.5755/j01.mech.23.4.15254
- Kohiyama, M., Oka, K. and Yamashita, T. (2020), "Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network", Struct. Control Health Monitor., 27(8), e2552. https://doi.org/10.1002/stc.2552
- Le, V. and Caracoglia, L. (2020), "A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads", Comput. Struct., 231, 106208. https://doi.org/10.1016/j.compstruc.2020.106208
- Lederman, G., Wang, Z., Bielak, J., Noh, H., Garrett, J.H., Chen, S., Kovacevic, J., Cerda, F. and Rizzo, P. (2014), "Damage quantification and localization algorithms for indirect SHM of bridges", Proceedings of International Conference on Bridge Maintenance, Safety Management, Shanghai, China, pp. 640-647. https://doi.org/10.13140/2.1.3308.8645
- Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A. and Hemez, F. (2006), "Identification of response surface models using genetic programming", Mech. Syst. Signal Process., 20(8), 1819-1831. https://doi.org/10.1016/j.ymssp.2005.12.003
- Liu, K., Law, S.S. and Zhu, X.Q. (2017), "System parameter identification from projection of inverse analysis", Journal of Sound and Vibration, 396, 83-107. https://doi.org/10.1016/j.jsv.2017.02.042
- Majumdar, A., Maiti, D.K. and Maity, D. (2012), "Damage assessment of truss structures from changes in natural frequencies using ant colony optimization", Appl. Mathe. Computat., 218(19), 9759-9772. https://doi.org/10.1016/j.amc.2012.03.031
- Mirjalili, S. (2023), The Genetic Algorithm (GA): Selection + Crossover + Mutation + Elitism, MATLAB Central File Exchange[CP]. Retrieved July 15, 2023
- Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
- Nguyen-Tuan, L., Koenke, C., Bettzieche, V. and Lahmer, T. (2018), "Uncertainty assessment in the results of inverse problems: applied to damage detection in masonry dams", Int. J. Reliabil. Safety, 12(1-2), 2-23. https://doi.org/10.1504/IJRS.2018.092498
- Nhamage, I.A., Lopez, R.H. and Miguel, L.F.F. (2016), "An improved hybrid optimization algorithm for vibration based-damage detection", Adv. Eng. Software, 93, 47-64. https://doi.org/10.1016/j.advengsoft.2015.12.003
- Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Safety, 25(1), 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
- Pan, J., Xu, Y. and Jin, F. (2015), "Seismic performance assessment of arch dams using incremental nonlinear dynamic analysis", Eur. J. Environ. Civil Eng., 19(3), 305-326. https://doi.org/10.1080/19648189.2014.960950
- Pandit, D., Zhang, L., Chattopadhyay, S., Lim, C.P. and Liu, C. (2018), "A scattering and repulsive swarm intelligence algorithm for solving global optimization problems", Knowled.-Based Syst., 156, 12-42. https://doi.org/10.1016/j.knosys.2018.05.002
- Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization", Mech. Syst. Signal Process., 22(4), 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
- Rajasekaran, S. and Amalraj, R. (2002), "Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron", Computers & structures, 80(31), 2495-2505. https://doi.org/10.1016/S0045-7949(02)00213-4
- Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Industr. Eng. Computat., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004
- Rao, R.V. and More, K.C. (2017), "Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm", Energy Convers. Manage., 140, 24-35. https://doi.org/10.1016/j.enconman.2017.02.068
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
- Stojanovic, B., Milivojevic, M., Ivanovic, M., Milivojevic, N. and Divac, D. (2013), "Adaptive system for dam behavior modeling based on linear regression and genetic algorithms", Adv. Eng. Software, 65, 182-190. https://doi.org/10.1016/j.advengsoft.2013.06.019
- Taheri, F., Ghasemi, M.R. and Dizangian, B. (2020), "Practical optimization of power transmission towers using the RBF-based ABC algorithm", Struct. Eng. Mech., Int. J., 73(4), 463-479. https://doi.org/10.12989/sem.2020.73.4.463
- Teng, S., Chen, G., Yan, Z., Cheng, L. and Bassir, D. (2023), "Vibration-based structural damage detection using 1-D convolutional neural network and transfer learning", Struct. Health Monitor., 22(4), 2888-2909. https://doi.org/10.1177/14759217221137931
- Trinh, M.C. and Jun, H. (2021), "Stochastic bending and buckling analysis of laminated composite plates using Latin hypercube sampling", Eng. Comput., 39(2), 1459-1497. https://doi.org/10.1007/s00366-021-01544-y
- Tsihrintzis, G.A., Virvou, M., Sakkopoulos, E. and Jain, L.C. eds. (2019), Machine Learning Paradigms: Applications of Learning and Analytics in Intelligent Systems, Vol. 1, Springer. https://doi.org/10.1007/978-3-030-15628-2
- Vorel, J. and Kabele, P. (2019), "Inverse analysis of traction-separation relationship based on sequentially linear approach", Comput. Struct., 212, 125-136. https://doi.org/10.1016/j.compstruc.2018.10.005
- Wang, W., Kuang, Y., Li, S. and Ni, X. (2012), "Back analysis of dam parameter under seismic action", Procedia Eng., 28, 429-433. https://doi.org/10.1016/j.proeng.2012.01.745
- Yang, L., Su, H. and Wen, Z. (2019), "Improved PLS and PSO methods-based back analysis for elastic modulus of dam", Adv. Eng. Software, 131, 205-216. https://doi.org/10.1016/j.advengsoft.2019.02.005
- Yuan, Q., Zhai, S., Wu, L., Chen, P., Zhou, Y. and Zuo, Q. (2019), "Blasting vibration velocity prediction based on least squares support vector machine with particle swarm optimization algorithm", Geosyst. Eng., 22(5), 279-288. https://doi.org/10.1080/12269328.2019.1607570
- Zhang, A. and Zhang, L. (2004), "RBF neural networks for the prediction of building interference effects", Comput. Struct., 82(27), 2333-2339. https://doi.org/10.1016/j.compstruc.2004.05.014
- Zhang, L., Wang, J.T., Xu, Y.J., He, C.H. and Zhang, C.H. (2020), "A procedure for 3D seismic simulation from rupture to structures by coupling SEM and FEM", Bull. Seismol. Soc. Am., 110(3), 1134-1148. https://doi.org/10.1785/0120190289