Acknowledgement
The authors acknowledge the editorial service of Mr. Ryan Lee at Cate School, Carpinteria, CA, USA such as translation, rephrasing, and Fig. drawings.
References
- Abu-Ain, W., Abdullah, S.N.H.S., Bataineh, B., Abu-Ain, T. and Omar, K. (2013), "Skeletonization algorithm for binary images", Procedia Technol., 11, 704-709. https://doi.org/10.1016/j.protcy.2013.12.248
- Arya, D., Maeda, H., Ghosh, S.K., Toshniwal, D., Mraz, A., Kashiyama, T. and Sekimoto, Y. (2021), "Deep learning-based road damage detection and classification for multiple countries", Autom. Constr., 132, 103935. https://doi.org/10.1016/j.autcon.2021.103935
- Dai, J., Li, Y., He, K. and Sun, J. (2016), "R-fcn: Object detection via region-based fully convolutional networks", Proceedings of the Neural Information Processing Systems Conference (NIPS), pp. 379-387.
- Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Autom. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Durix, B., Chambon, S., Leonard, K., Mari, J.L. and Morin, G. (2019), "The propagated skeleton: A robust detail-preserving approach", Proceedings of Discrete Geometry for Computer Imagery: 21st IAPR International Conference, DGCI 2019, Marne-la-Vallee, France, March, pp. 343-354. https://doi.org/10.1007/978-3-030-14085-4_27
- Gao, S., Jie, Z., Pan, Z., Qin, F. and Li, R. (2018), "Automatic recognition of pavement crack via convolutional neural network", In: Lecture Notes Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 82-89. https://doi.org/10.1007/978-3-662-56689-3_7
- Guo, Z. and Hall, R.W. (1989), "Parallel thinning with two-subiteration algorithms", Commun. ACM, 32(3), 359-373. https://doi.org/10.1145/62065.62074
- Handalage, U. and Kuganandamurthy, L. (2021), "Real-time object detection using YOLO: A review", ResearchGate.
- Haralick, R.M., Sternberg, S.R. and Zhuang, X. (1987), "Image analysis using mathematical morphology", IEEE Transact. Pattern Anal. Mach. Intell., PAMI-9(4), 532-550. https://doi.org/10.1109/TPAMI.1987.4767941
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Trans. Pattern Anal. Mach. Intell., 37, 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- He, K., Gkioxari, G., Dollar, P. and Girshick, R., (2017), "Mask R-CNN", Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969.
- Jiang, P., Ergu, D., Liu, F., Cai, Y. and Ma, B. (2022), "A review of YOLO algorithm developments", Procedia Comput. Sci., 199, 1066-1073. https://doi.org/10.1016/j.procs.2022.01.135
- Jocher, G. (2022) YOLOv5 release v6.1, https://github.com/ultralytics/yolov5/releases/tag/v6.0, 2022
- Jocher, G., Chaurasia, A. and Qiu, J. (2023), YOLO by Ultralytics (Version 8.0.0). https://github.com/ultralytics/ultralytics
- Karballaeezadeh, N., Zaremotekhases, F., Shamshirband, S., Mosavi, A., Nabipour, N., Csiba, P. and Varkonyi-Koczy, A.R. (2020), "Intelligent Road inspection with advanced machine learning; Hybrid prediction models for smart mobility and transportation maintenance systems", Energies, 13. https://doi.org/10.3390/en13071718
- Kim, J., Choi, S., Do, M. and Han, D. (2016), "Road maintenance planning with traffic demand forecasting", Int. J. Highw. Eng., 18, 47-57. https://doi.org/10.7855/IJHE.2016.18.3.047
- Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Concrete crack identification using a UAV incorporating hybrid image processing", Sensors, 17(9), 1424-8220. https://doi.org/10.3390/s17092052
- Leborgne, A., Mille, J. and Tougne, L. (2015), "Noise-resistant digital euclidean connected skeleton for graph-based shape matchingg", J. Visual Commun. Image Represent, 31, 165-176. https://doi.org/10.1016/j.jvcir.2015.06.005
- Lee, S.H. and Yoo, I.K. (2008), "Overview of pavement management system in Korea and its operation results", In: ISARC 2008. Proceedings of the from the 25th International Symposium on Automation and Robotics in Construction, pp. 355-364. https://doi.org/10.3846/isarc.20080626.355
- Lee, S.T., Park, D.W. and Mission, J.L. (2013), "Estimation of pavement rehabilitation cost using pavement management data", Struct. Infrastruct. Eng., 9, 458-464. https://doi.org/10.1080/15732479.2011.560163
- Li, H., Song, D., Liu, Y. and Li, B. (2019), "Automatic pavement crack detection by multi-scale image fusion", IEEE Trans. Intell. Transp. Syst., 20(6), 2025-2036. https://doi.org/10.1109/TITS.2018.2856928
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2018), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988.
- Liu, Y., Yao, J., Lu, X., Xie, R. and Li, L. (2019), "DeepCrack: A deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, 338, 139-153. https://doi.org/10.1016/j.neucom.2019.01.036
- Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection and classification using deep neural networks with smartphone images", Comput. Aid. Civil Infrastruct. Eng., 33, 1127-1141. https://doi.org/10.1111/mice.12387
- Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T. and Omata, H. (2021), "Generative adversarial network for road damage detection", Comput. Aid. Civil Infrastruct. Eng., 36, 47-60. https://doi.org/10.1111/mice.12561
- Nisanth, A. and Mathew, A. (2014), "Automated visual inspection on pavement crack detection and characterization", Int. J. Technol. Eng. Syst., 6(1), 14-20.
- Ogniewicz, R.L. and Ilg, M. (1992), "Voronoi skeletons: theory and applications", Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June, pp. 63-69. https://doi.org/10.1109/CVPR.1992.223226
- Ong, J.C., Ismadi, M.Z.P. and Wang, X. (2022), "A hybrid method for pavement crack width measurement", Measurement, 197, 111260. https://doi.org/10.1016/j.measurement.2022.111260
- Redmon, J. and Farhadi, A. (N.D.) (2022), YOLOv3: An incremental improvement. Available online: https://pjreddie.com/YOLO/ (accessed on Nov 24, 2022)
- Ren, S., He, K., Girshick, R. and Sun, J. (2017), "Faster R-CNN: Towards real-time object detection with region proposal networks", IEEE Trans. Pattern Anal. Mach. Intell., 39, 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Rudzitis, A. and Zaeva, M.A. (2021), "Alternative inverse perspective mapping homography matrix computation for ADAS systems using camera intrinsic and extrinsic calibration parameters", Procedia Comput. Sci., 190, 695-700. https://doi.org/10.1016/J.PROCS.2021.06.081
- Shon, H. and Lee, J. (2021), "Integrating multi-scale inspection, maintenance, rehabilitation, and reconstruction decisions into system-level pavement management systems", Transport. Res. Part C: Emerg. Technol., 131, p. 103228. https://doi.org/10.1016/j.trc.2021.103328
- Siriborvornratanakul, T. (2018), "An automatic road distress visual inspection system using an onboard in-car camera", Adv. Multimedia, 1-10. https://doi.org/10.1155/2018/2561953
- Tayo, C.O., Linsangan, N.B. and Pellegrino, R.V. (2019), "Portable crack width calculation of concrete road pavement using machine vision", Proceedings of the 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, pp. 1-5. https://doi.org/10.1109/HNICEM48295.2019.9072731
- Tzutalin. LabelImg. Git code (2015), https://github.com/tzutalin/labelImg
- Wang, C.-Y., Bochkovskiy, A. and Liao, H.-Y. M. (2021), "Scaled-yolov4: Scaling cross stage partial network", Proceedings of the IEEE/cvf Conference on Computer Vision and Pattern Recognition, pp. 13029-13038. https://doi.org/10.1109/CVPR46437.2021.01283
- Wang, C.Y., Bochkovskiy, A. and Liao, H.Y.M. (2022), "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464-7475.
- Wu, R.T., Tang, W. and Jahanshahi, M.R. (2022), "Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion", Smart Struct. Syst., Int. J., 29(1), 221-235. https://doi.org/10.12989/sss.2022.29.1.221
- Zhang, L., Yang, F., Zhang, Y.D. and Zhu, Y.J. (2016), "Road crack detection using deep convolutional neural network", IEEE International Conference on Image Processing (ICIP), pp. 3708-3712. https://doi.org/10.1109/ICIP.2016.7533052
- Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civ. Infrastruct. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297
- Zhao, J., Hu, F., Qiao, W., Zhai, W., Xu, Y., Bao, Y. and Li, H. (2022), "A modified u-net for crack segmentation by self-attention-self-adaption neuron and random elastic deformation", Smart Struct. Syst., Int. J., 29(1), 1-16. https://doi.org/10.12989/sss.2022.29.1.001
- Zhou, S. and Song, W. (2020), "Concrete roadway crack segmentation using encoder-decoder networks with range images", Autom. Constr., 120, 103403. https://doi.org/10.1016/j.autcon.2020.103403
- Zhu, Q. (2016), "Pavement crack detection algorithm Based on image processing analysis", Proceedings in the 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2016, Vol. 1, pp. 15-18.