DOI QR코드

DOI QR Code

Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp.

  • Jong-Hwan Shin (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ha-Kyoung Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Seong-Chan Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • You-Kyoung Han (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2023.08.24
  • Accepted : 2023.10.31
  • Published : 2023.12.01

Abstract

Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.

Keywords

Acknowledgement

This work was carried out with the support of the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01667601), and supported by (2023) the RDA Fellowship Program of the National Institute of Horticultural & Herbal Science, Rural Development Administration, Republic of Korea.

References

  1. Arora, N., Ahmad, T., Rajagopal, R. and Bhatnagar, R. K. 2003. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem. Biophys. Res. Commun. 307:620-625. https://doi.org/10.1016/S0006-291X(03)01228-2
  2. Back, C.-G., Hwang, S.-K., Park, M. J., Kwon, Y.-S., Jung, H.-Y. and Park, J.-H. 2017. Phylogenetic analysis of downy mildew caused by Peronospora destructor and a method of detection by PCR. Korean J. Mycol. 45:386-393 (in Korean).
  3. Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liepin, M., Desoignies, N., Modrie, P., Legreve, A., Mahillon, J. and Bragard, C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front. Microbiol. 9:143.
  4. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28:214-220. https://doi.org/10.1016/j.fm.2010.03.007
  5. de Almeida Melo, A. L., Soccol, V. T. and Soccol, C. R. 2016. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36:317-326. https://doi.org/10.3109/07388551.2014.960793
  6. Degani, O., Dimant, E., Gordani, A., Graph, S. and Margalit, E. 2022. Prevention and control of Fusarium spp., the causal agents of onion (Allium cepa) basal rot. Horticulturae 8:1071.
  7. Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., ElAichar, F., Khorf, H. and Ferre, J. 2017. Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins 9:139.
  8. Dulmage, H. T. 1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Invertebr. Pathol. 15:232-239. https://doi.org/10.1016/0022-2011(70)90240-5
  9. Fatima, R., Mahmood, T., Moosa, A., Aslam, M. N., Shakeel, M. T., Maqsood, A., Shafiq, M. U., Ahmad, T., Moustafa, M. and Al-Shehri, M. 2023. Bacillus thuringiensis CHGP12 uses a multifaceted approach for the suppression of Fusarium oxysporum f. sp. ciceris and to enhance the biomass of chickpea plants. Pest Manag. Sci. 79:336-348. https://doi.org/10.1002/ps.7203
  10. Fiedler, G., Schneider, C., Igbinosa, E. O., Kabisch, J., Brinks, E., Becker, B., Stoll, D. A., Cho, G.-S., Huch, M. and Franz, C. M. A. P. 2019. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 19:250.
  11. Fira, D., Dimkic, I., Beric, T., Lozo, J. and Stankovic, S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285:44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  12. Galvan, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., Gonzalez, P. H., Waalwijk, C., Kik, C. and Scholten, O. E. 2008. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Pathol. 121:499-512. https://doi.org/10.1007/s10658-008-9270-9
  13. Gandhi Pragash, M., Narayanan, K. B., Naik, P. R. and Sakthivel, N. 2009. Characterization of Chryseobacterium aquaticum strain PUPC1 producing a novel antifungal protease from rice rhizosphere soil. J. Microbiol. Biotechnol. 19:99-107.
  14. Ghanbarzadeh, B., Mohammadi Goltapeh, E. and Safaie, N. 2014. Identification of Fusarium species causing basal rot of onion in East Azarbaijan province, Iran and evaluation of their virulence on onion bulbs and seedlings. Arch. Phytopathol. Plant Prot. 47:1050-1062. https://doi.org/10.1080/03235408.2013.829628
  15. Griffiths, G., Trueman, L., Crowther, T., Thomas, B. and Smith, B. 2002. Onions: a global benefit to health. Phytother. Res. 16:603-615. https://doi.org/10.1002/ptr.1222
  16. Haapalainen, M., Latvala, S., Kuivainen, E., Qiu, Y., Segerstedt, M. and Hannukkala, A. O. 2016. Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathol. 65:1310-1320. https://doi.org/10.1111/ppa.12521
  17. Han, J.-H., Park, G.-C., Kim, J.-O. and Kim, K. S. 2015a. Biological control of Fusarium stalk rot of maize using Bacillus spp. Res. Plant Dis. 21:280-289 (in Korean). https://doi.org/10.5423/RPD.2015.21.4.280
  18. Han, J.-H., Shim, H., Shin, J.-H. and Kim, K. S. 2015b. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31:165-175. https://doi.org/10.5423/PPJ.OA.03.2015.0036
  19. Hassaan, M. A. and El Nemr, A. 2020. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 46:207-220. https://doi.org/10.1016/j.ejar.2020.08.007
  20. Holz, G. and Knox-Davies, P. S. 1985. Production of pectic enzymes by Fusarium oxysporum f. sp. cepae and its involvement in onion bulb rot. J. Phytopathol. 112:69-80. https://doi.org/10.1111/j.1439-0434.1985.tb00792.x
  21. Ji, Z.-L., Peng, S., Chen, L.-L., Liu, Y., Yan, C. and Zhu, F. 2020. Identification and characterization of a serine protease from Bacillus licheniformis W10: a potential antifungal agent. Int. J. Biol. Macromol. 145:594-603. https://doi.org/10.1016/j.ijbiomac.2019.12.216
  22. Jimenez, G., Blanch, A. R., Tamames, J. and Rossello-Mora, R. 2013. Complete genome sequence of Bacillus toyonensis BCT-7112T, the active ingredient of the feed additive preparation Toyocerin. Genome Announc. 1:e01080-13.
  23. Jouzani, G. S., Valijanian, E. and Sharafi, R. 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 101:2691-2711. https://doi.org/10.1007/s00253-017-8175-y
  24. Jung, H.-K., Kim, J.-R., Kim, B.-K., Yu, T.-S. and Kim, S.-D. 2005. Selection and antagonistic mechanism of Bacillus thuringiensis BK4 against fusarium wilt disease of tomato. Microbiol. Biotechnol. Lett. 33:194-199.
  25. Kil, M.-R., Kim, D.-A., Paek, S.-K., Kim, J.-S., Choi, S.-Y., Jin, D.-Y., Youn, Y.-N., Hwang, I.-C., Ohba, M. and Yu, Y.-M. 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Korean J. Appl. Entomol. 47:457-465 (in Korean). https://doi.org/10.5656/KSAE.2008.47.4.457
  26. Kim, B.-R., Park, M.-S., Han, K.-S., Hahm, S.-S., Park, I.-H. and Song, J.-K. 2018. Biological control using Bacillus toyonensis strain CAB12243-2 against soft rot on Chinese cabbage. Korean J. Org. Agric. 26:129-140 (in Korean). https://doi.org/10.11625/KJOA.2018.26.1.129
  27. Kim, H. S., Park, H. W., Lee, D.W., Yu, Y. M., Kim, J. I. and Kang, S. K. 1995. Distribution and characterization of Bacillus thuringiensis isolated from soils in Korea. Korean J. Appl. Entomol. 34:344-349 (in Korean).
  28. Kim, H. T., Park, S.-W., Choi, G. J., Kim, J.-C. and Cho, K. Y. 2002. Inhibitory effect of flusilazole on the spore formation of Aspergillus niger causing the onion black mold in vapour phase. Res. Plant Dis. 8:124-130 (in Korean). https://doi.org/10.5423/RPD.2002.8.2.124
  29. Kim, Y.-A., Jeong, A.-R., Jang, M. and Park, C.-J. 2020. Occurrence of powdery mildew caused by new race 2F of Podosphaera xanthii on cucumber in Korea. Res. Plant Dis. 26:183- 189 (in Korean). https://doi.org/10.5423/RPD.2020.26.3.183
  30. Kintega, K. R., Zida, P. E., Soalla, R., Tarpaga, V. W., Sankara, P. and Sereme, P. 2020. Determination of Fusarium species associated with onion plants (Allium cepa) in field in Burkina Faso causing damping-off and bulb rots. Am. J. Plant Sci. 11:64-79. https://doi.org/10.4236/ajps.2020.111006
  31. Ko, K. S., Kim, J.-M., Kim, J.-W., Jung, B. Y., Kim, W., Kim, I. J. and Kook, Y.-H. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J. Clin. Microbiol. 41:2908-2914. https://doi.org/10.1128/JCM.41.7.2908-2914.2003
  32. Labanska, M., van Amsterdam, S., Jenkins, S., Clarkson, J. P. and Covington, J. A. 2022. Preliminary studies on detection of Fusarium basal rot infection in onions and shallots using electronic nose. Sensors 22:5453.
  33. Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M. and Goettel, M. S. 2015. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132:1-41. https://doi.org/10.1016/j.jip.2015.07.009
  34. Lager, S. 2011. Survey of Fusarium species on yellow onion (Allium cepa) on Oland. M.Sc. thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden.
  35. Le, D., Audenaert, K. and Haesaert, G. 2021. Fusarium basal rot: profile of an increasingly important disease in Allium spp. Trop. Plant Pathol. 46:241-253. https://doi.org/10.1007/s40858-021-00421-9
  36. Lee, K.-K., Mok, I.-K., Yoon, M.-H., Kim, H.-J. and Chung, D.-Y. 2012. Mechanisms of phosphate solubilization by PSB (phosphate-solubilizing bacteria) in soil. Korean J. Soil. Sci. Fert. 45:169-176. https://doi.org/10.7745/KJSSF.2012.45.2.169
  37. Ling, L., Cheng, W., Jiang, K., Jiao, Z., Luo, H., Yang, C., Pang, M. and Lu, L. 2022. The antifungal activity of a serine protease and the enzyme production of characteristics of Bacillus licheniformis TG116. Arch. Microbiol. 204:601.
  38. Logan, N. A. and Berkeley, R. C. 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130:1871-1882. https://doi.org/10.1099/00221287-130-7-1871
  39. Lopes, R., Cerdeira, L., Tavares, G. S., Ruiz, J. C., Blom, J., Horacio, E. C. A., Mantovani, H. C. and de Queiroz, M. V. 2017. Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J. Microbiol. Biotechnol. 33:185.
  40. Lyngkhoi, F., Khar, A., Mangal, M., Gaikwad, A. B. and Thirunavukkarasu, N. 2019. Expression analysis and association of bulbing to FLOWERING LOCUS T (FT) gene in short day onion (Allium cepa L.). Indian J. Genet. 79:77-81. https://doi.org/10.31742/IJGPB.79.1.10
  41. Mahmood, N., Muazzam, M. A., Ahmad, M., Hussain, S. and Javed, W. 2021. Phytochemistry of Allium cepa L. (onion): an overview of its nutritional and pharmacological importance. Sci. Inquiry Rev. 5:41-59. https://doi.org/10.32350/sir/53.04
  42. Mesnage, R., Defarge, N., Spiroux de Vendomois, J. and Seralini, G.-E. 2014. Major pesticides are more toxic to human cells than their declared active principles. Biomed Res. Int. 2014:179691.
  43. Moon, J.-S., Lee, J.-T., Ha, I.-J., Whang, S.-G., Song, W.-D., Cheon, M.-G. and Lee, C.-J. 2007. Influence of soil flooding on control of pink root disease in onion crop. Res. Plant Dis. 13:104-109 (in Korean). https://doi.org/10.5423/RPD.2007.13.2.104
  44. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  45. Park, S. Y., Lee, D. H., Chung, H. J. and Koh, Y. J. 1995. Gray mold neck rot of onion caused by Botrytis allii in Korea. Korean J. Plant Pathol. 11:348-352 (in Korean).
  46. Parthasarathy, S., Rajamanickam, S. and Muthamilan, M. 2016. Allium diseases: a global perspective. Innov. Farming 1:171-178.
  47. Perez-Garcia, A., Romero, D. and de Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003
  48. Raddadi, N., Belaouis, A., Tamagnini, I., Hansen, B. M., Hendriksen, N. B., Boudabous, A., Cherif, A. and Daffonchio, D. 2009. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J. Basic Microbiol. 49:293-303. https://doi.org/10.1002/jobm.200800182
  49. Ren, F., Perussello, C. A., Zhang, Z., Gaffney, M. T., Kerry, J. P. and Tiwari, B. K. 2018. Effect of agronomic practices and drying techniques on nutritional and quality parameters of onions (Allium cepa L.). Dry. Technol. 36:435-447. https://doi.org/10.1080/07373937.2017.1339715
  50. Retig, N., Kust, A. F. and Gabelman, W. H. 1970. Greenhouse and field tests for determining the resistance of onion lines to Fusarium basal rot. J. Am. Soc. Hortic. Sci. 95:422-424. https://doi.org/10.21273/JASHS.95.4.422
  51. Reyes-Ramirez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131-M134. https://doi.org/10.1111/j.1365-2621.2004.tb10721.x
  52. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  53. Rojas-Solis, D., Vences-Guzman, M. A., Sohlenkamp, C. and Santoyo, G. 2020. Bacillus toyonensis COPE52 modifies lipid and fatty acid composition, exhibits antifungal activity, and stimulates growth of tomato plants under saline conditions. Curr. Microbiol. 77:2735-2744. https://doi.org/10.1007/s00284-020-02069-1
  54. Roldan-Marin, E., Krath, B. N., Poulsen, M., Binderup, M.-L., Nielsen, T. H., Hansen, M., Barri, T., Langkilde, S., Cano, M. P., Sanchez-Moreno, C. and Dragsted, L. O. 2009. Effects of an onion by-product on bioactivity and safety markers in healthy rats. Br. J. Nutr. 102:1574-1582. https://doi.org/10.1017/S0007114509990870
  55. Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C. and Glick, B. R. 2021. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10:475.
  56. Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N. and Bagyaraj, D. J. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128:1583-1594. https://doi.org/10.1111/jam.14506
  57. Sengupta, A., Ghosh, S. and Bhattacharjee, S. 2004. Allium vegetables in cancer prevention: an overview. Asian Pac. J. Cancer Prev. 5:237-245.
  58. Shabir, I., Pandey, V. K., Dar, A. H., Pandiselvam, R., Manzoor, S., Mir, S. A., Shams, R., Dash, K. K., Fayaz, U., Khan, S. A., Jeevarathinam, G., Zhang, Y., Rusu, A. V. and Trif, M. 2022. Nutritional profile, phytochemical compounds, biological activities, and utilisation of onion peel for food applications: a review. Sustainability 14:11958.
  59. Shin, J.-H., Lee, H.-K., Back, C.-G., Kang, S.-H., Han, J.-W., Lee, S.-C. and Han, Y.-K. 2023. Identification of Fusarium basal rot pathogens of onion and evaluation of fungicides against the pathogens. Mycobiology 51:264-272. https://doi.org/10.1080/12298093.2023.2243759
  60. Shrestha, A., Sultana, R., Chae, J.-C., Kim, K. and Lee, K.-J. 2015. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur. J. Plant Pathol. 142:577-589. https://doi.org/10.1007/s10658-015-0636-5
  61. Slimestad, R., Fossen, T. and Vagen, I. M. 2007. Onions: a source of unique dietary flavonoids. J. Agric. Food Chem. 55:10067-10080. https://doi.org/10.1021/jf0712503
  62. Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 9:538-540. https://doi.org/10.1128/jcm.9.4.538-540.1979
  63. Stadnik, M. J. and Dhingra, O. D. 1997. Root infection by Fusarium oxysporum f. sp. cepae at different growth stages and its relation to the development of onion basal rot. Phytopathol. Mediterr. 36:8-11.
  64. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  65. Taylor, A., Vagany, V., Jackson, A. C., Harrison, R. J., Rainoni, A. and Clarkson, J. P. 2016. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Mol. Plant Pathol. 17:1032-1047. https://doi.org/10.1111/mpp.12346
  66. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  67. Wasano, N., Kim, K. H. and Ohba, M. 1998. Delta-endotoxin proteins associated with spherical parasporal inclusions of the four Lepidoptera-specific Bacillus thuringiensis strains. J. Appl. Microbiol. 84:501-508. https://doi.org/10.1046/j.1365-2672.1998.00371.x
  68. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  69. Whiteley, H. R. and Schnepf, H. E. 1986. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu. Rev. Microbiol. 40:549-576. https://doi.org/10.1146/annurev.mi.40.100186.003001
  70. Williams, L. D., Burdock, G. A., Jimenez, G. and Castillo, M. 2009. Literature review on the safety of Toyocerin®, a nontoxigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul. Toxicol. Pharmacol. 55:236-246. https://doi.org/10.1016/j.yrtph.2009.07.009
  71. Xu, T., Zhu, T. and Li, S. 2016. β-1, 3-1, 4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World J. Microbiol. Biotechnol. 32:1-9. https://doi.org/10.1007/s11274-015-1971-6
  72. Zhou, Y., Choi, Y. L., Sun, M. and Yu, Z. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbial. Biotechnol. 80:563-572. https://doi.org/10.1007/s00253-008-1610-3