DOI QR코드

DOI QR Code

A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant

  • Boyoung Lee (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University) ;
  • Jeong-Im Lee (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Soon-Kyeong Kwon (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Choong-Min Ryu (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jihyun F. Kim (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University)
  • 투고 : 2023.09.16
  • 심사 : 2023.10.22
  • 발행 : 2023.12.01

초록

Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.

키워드

과제정보

We thank S. P. Dinesh-Kumar for providing GATEWAY ready TRV-VIGS vectors, Alan Collmer for pCPP3221 plasmid. This work was supported by grants from the National Research Foundation of Korea (2018R1A6A1A03025607 and RS-2023-00211512) and the KRIBB Research Initiative Program.

참고문헌

  1. Abby, S. S. and Rocha, E. P. C. 2012. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8:e1002983.
  2. Adachi, H., Derevnina, L. and Kamoun, S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50:121-131. https://doi.org/10.1016/j.pbi.2019.04.007
  3. Alfano, J. R. and Collmer, A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179:5655-5662. https://doi.org/10.1128/jb.179.18.5655-5662.1997
  4. Buttner, D. and Bonas, U. 2003. Common infection strategies of plant and animal pathogenic bacteria. Curr. Opin. Plant Biol. 6:312-319. https://doi.org/10.1016/S1369-5266(03)00064-5
  5. Chang, J. H., Goel, A. K., Grant, S. R. and Dangl, J. L. 2004. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr. Opin. Microbiol. 7:11-18. https://doi.org/10.1016/j.mib.2003.12.006
  6. Chaudhry, A. D., Baker, C. J. and Springett, J. A. 1987. Barley seedling establishment by direct drilling in a wet soil. 2. Effects of earthworms, residue and openers. Soil Till. Res. 9:123-133. https://doi.org/10.1016/0167-1987(87)90079-1
  7. Cheng, L. W., Kay, O. and Schneewind, O. 2001. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J. Bacteriol. 183:5293-5301. https://doi.org/10.1128/JB.183.18.5293-5301.2001
  8. Deng, W., Marshall, N. C., Rowland, J. L., McCoy, J. M., Worrall, L. J., Santos, A. S., Strynadka, N. C. J. and Finlay, B. B. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 15:323-337. https://doi.org/10.1038/nrmicro.2017.20
  9. Derevnina, L., Contreras, M. P., Adachi, H., Upson, J., Cruces, A. V., Xie, R., Sklenar, J., Menke, F. L. H., Mugford, S. T., MacLean, D., Ma, W., Hogenhout, S. A., Goverse, A., Maqboo, A., Wu, C.-H. and Kamoun, S. 2021. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biol. 19:e3001136.
  10. Duxbury, Z., Wu, C.-H. and Ding, P. 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72:155-184. https://doi.org/10.1146/annurev-arplant-080620-104948
  11. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  12. Galan, J. E., Lara-Tejero, M., Marlovits, T. C. and Wagner, S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68:415-438. https://doi.org/10.1146/annurev-micro-092412-155725
  13. Goodman, R. N. and Vovacky, A. J. 1994. The hypersensitive reaction in plants to pathogens. APS Press, St. Paul, MN, USA. 256 pp.
  14. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. and Dangl, J. L. 2006. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60:425-449. https://doi.org/10.1146/annurev.micro.60.080805.142251
  15. He, S. Y., Nomura, K. and Whittam, T. S. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694:181-206. https://doi.org/10.1016/j.bbamcr.2004.03.011
  16. Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321-334. https://doi.org/10.1007/978-94-010-0934-8_6
  17. Jeong, H., Yim, J. H., Lee, C., Choi, S.-H., Park, Y. K., Yoon, S. H., Hur, C.-G., Kang, H.-Y., Kim, D., Lee, H. H., Park, K. H., Park, S.-H., Park, H.-S., Lee, H. K., Oh, T. K. and Kim, J. F. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res. 33:7066-7073. https://doi.org/10.1093/nar/gki1016
  18. Kang, L., Tang, X. and Mysore, K. S. 2004. Pseudomonas type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato. Mol. Plant-Microbe Interact. 17:1328-1336. https://doi.org/10.1094/MPMI.2004.17.12.1328
  19. Keogh, R. C., Deverall, B. J. and McLeod, S. 1980. Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean. Trans. Br. Mycol. Soc. 74:329-333. https://doi.org/10.1016/S0007-1536(80)80163-X
  20. Kim, J. F. 2001. Revisiting the chlamydial type III protein secretion system: clues to the origin of type III protein secretion. Trends Genet. 17:65-69. https://doi.org/10.1016/S0168-9525(00)02175-2
  21. Kim, J. F. and Alfano, J. R. 2002. Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol. 264:127-147.
  22. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  23. Kvitko, B. H. and Collmer, A. 2023. Discovery of the Hrp type III secretion system in phytopathogenic bacteria: how investigation of hypersensitive cell death in plants led to a novel protein injector system and a world of inter-organismal molecular interactions within plant cells. Phytopathology 113:626-636. https://doi.org/10.1094/PHYTO-08-22-0292-KD
  24. Kwon, S.-K., Park, Y.-K. and Kim, J. F. 2010. Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl. Environ. Microbiol. 76:1661-1668. https://doi.org/10.1128/AEM.01468-09
  25. Lee, H. K., Chun, J., Moon, E. Y., Ko, S. H., Lee, D. S., Lee, H. S. and Bae, K. S. 2001. Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int. J. Syst. Evol. Microbiol. 51:661-666. https://doi.org/10.1099/00207713-51-2-661
  26. Letunic, I. and Bork, P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47:W256-W259. https://doi.org/10.1093/nar/gkz239
  27. Mukhtar, M. S., McCormack, M. E., Argueso, C. T. and Pajerowska-Mukhtar, K. M. 2016. Pathogen tactics to manipulate plant cell death. Curr. Biol. 26:R608-R619. https://doi.org/10.1016/j.cub.2016.02.051
  28. Peart, J. R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D. C., Schauser, L., Jaggard, D. A. W., Xiao, S., Coleman, M. J., Dow, M., Jones, J. D. G., Shirasu, K. and Baulcombe, D. C. 2002. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. U. S. A. 99:10865-10869. https://doi.org/10.1073/pnas.152330599
  29. Petnicki-Ocwieja, T., Schneider, D. J., Tam, V. C., Chancey, S. T., Shan, L., Jamir, Y., Schechter, L. M., Janes, M. D., Buell, C. R., Tang, X., Collmer, A. and Alfano, J. R. 2002. Genome-wide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. U. S. A. 99:7652-7657. https://doi.org/10.1073/pnas.112183899
  30. Prithiviraj, B., Weir, T., Bais, H. P., Schweizer, H. P. and Vivanco, J. M. 2005. Plant models for animal pathogenesis. Cell. Microbiol. 7:315-324. https://doi.org/10.1111/j.1462-5822.2005.00494.x
  31. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G. and Ausubel, F. M. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899-1902. https://doi.org/10.1126/science.7604262
  32. Roy, D., Panchal, S., Rosa, B. A. and Melotto, M. 2013. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 103:326-332. https://doi.org/10.1094/PHYTO-09-12-0230-FI
  33. Schulze-Lefert, P. and Panstruga, R. 2011. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16:117-125. https://doi.org/10.1016/j.tplants.2011.01.001
  34. Schwiesow, L., Lam, H., Dersch, P. and Auerbuch, V. 2015. Yersinia type III secretion system master regulator LcrF. J. Bacteriol. 198:604-614. https://doi.org/10.1128/JB.00686-15
  35. Senthil-Kumar, M. and Mysore, K. S. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407-427. https://doi.org/10.1146/annurev-phyto-082712-102319
  36. Snellings, N. J., Popek, M. and Lindler, L. E. 2001. Complete DNA sequence of Yersinia enterocolitica serotype 0:8 low-calcium-response plasmid reveals a new virulence plasmid-associated replicon. Infect. Immun. 69:4627-4638. https://doi.org/10.1128/IAI.69.7.4627-4638.2001
  37. Ustun, S., Muller, P., Palmisano, R., Hensel, M. and Bornke, F. 2012. SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. New Phytol. 194:1046-1060. https://doi.org/10.1111/j.1469-8137.2012.04124.x
  38. Wurtzel, O., Yoder-Himes, D. R., Han, K., Dandekar, A. A., Edelheit, S., Greenberg, E. P., Sorek, R. and Lory, S. 2012. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog. 8:e1002945.
  39. Xian, L., Yu, G., Wei, Y., Rufian, J. S., Li, Y., Zhuang, H., Xue, H., Morcillo, R. J. L. and Macho, A. P. 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host Microbe 28:548-557. https://doi.org/10.1016/j.chom.2020.07.003
  40. Yoon, S. H., Park, Y.-K., Lee, S., Choi, D., Oh, T. K., Hur, C.-G. and Kim, J. F. 2007. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 35:D395-D400. https://doi.org/10.1093/nar/gkl790