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ON ADDITIVE MAPPINGS WITH BOUNDED VALUE

NEAR A POINT

Won-Gil Park, Ick-Soon Chang and Jaiok Roh∗

Abstract. In this paper, we will first prove the linearity of addi-
tive mappings with bounded value near a point. And by using our
theorem we will investigate the instability of the Cauchy equation
in R2.

1. Introduction

In 1821, Cauchy [1] proved the following theorem.

Proposition 1.1. If an additive mapping f : R → R is continuous,
then f is linear.

In 1946, Kestelman [3] proved the following theorem.

Proposition 1.2. Let E1 and E2 be normed spaces, and let E be a
subset of E1. Suppose that there is a δ > 0 satisfying

{v ∈ E1 : ∥v∥ < δ} ⊂ {x− y : x, y ∈ E}.

If an additive mapping f : E1 → E2 is bounded on E, then f is linear.

In 1991, Gajda [2] also proved the following theorem.

Proposition 1.3. Let E1 be a normed space and E2 a Banach space.
And let ε > 0 and p ∈ R \ {1}. If f : E1 → E2 is a mapping such that

∥f(x+ y)− f(x)− f(y)∥ < ε(∥x∥p + ∥y∥p)
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for all x, y ∈ E1, then there exists a unique additive mapping T : E1 →
E2 such that

∥f(x)− T (x)∥ ≤ 1− p

|1− p|
2ε

2− 2p
∥x∥p

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed
x ∈ E1, then T is linear.

In 2010, Reem [4] proved the following theorem.

Proposition 1.4. If an additive mapping f : R → R is integrable on
some bounded closed interval I, then f is linear.

In this paper, we will present another version and proof of Proposition
1.2 as follows.

Theorem 1.5. Let T : R2 → R2 be a mapping satisfying the Cauchy
equation

T (u+ v) = T (u) + T (v)

for all u,v ∈ R2. If T is bounded mapping on a small disk B(x, r)={z ∈
R2 | |z−x| < r} for some x ∈ R2, then there exists a 2×2 matrix A such
that T (u) = Au for all u ∈ R2. Therefore, the mapping T : R2 → R2 is
a linear mapping.

Gajda [2] investigated the instability of the Cauchy equation in R as
follows.

Proposition 1.6. For any ε > 0, there exists a mapping f : R → R
satisfying

|f(x+ y)− f(x)− f(y)| < ε(|x|+ |y|)
for all x, y ∈ R such that there is no constant δ ≥ 0 and no additive
function T : R → R satisfying the condition

|f(x)− T (x)| ≤ δ|x|
for all x ∈ R.

In this paper, we will also investigate the instability of the Cauchy
equation in R2 as follows.

Theorem 1.7. For any ε > 0, there exists a mapping f : R2 → R2

satisfying
|f(x+ y)− f(x)− f(y)| < ε(|x|+ |y|)

for all x,y ∈ R2 such that there is no constant δ ≥ 0 and no additive
function T : R2 → R2 satisfying the condition

|f(x)− T (x)| ≤ δ|x|
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for all x ∈ R2. So we can say about the instability of the Cauchy
equation in R2.

2. Main Results

In this section, we will prove main results.

Theorem 2.1. Let T : R2 → R2 be a mapping satisfying the Cauchy
equation

T (u+ v) = T (u) + T (v)

for all u,v ∈ R2. If T is bounded on a small disk B(x, r)={z ∈ R2 | |z−
x| < r} for some x ∈ R2, then there exists a 2 × 2 matrix A such that
T (u)=Au for all u ∈ R2. Therefore, the mapping T : R2 → R2 is a
linear mapping.

Proof : If T = (T1, T2) is bounded on a small disk B(x, r)={z ∈
R2 | |z− x| < r}, then T is bounded on a small disk containing 0 ∈ R2.
Since T is bounded on a small disk containing 0 ∈ R2 there exists z0 =
(π1(z0), π2(z0)) such that π1(z0) ̸= 0, π2(z0) ̸= 0, where π1, π2 : R2 → R
are the projection mappings given by π1(x, y) := x and π2(x, y) := y,
respectively.

Define G : R2 → R2 by
(2.1)

G(z) := T

(
π1(z)
π2(z)

)
−
( 1

π1(z0)
T1

(
π1(z0)

0

)
1

π2(z0)
T1

(
0

π2(z0)

)
1

π1(z0)
T2

(
π1(z0)

0

)
1

π2(z0)
T2

(
0

π2(z0)

)) (π1(z)
π2(z)

)
for all z ∈ R2. Then, by the additive property of T , the mapping G
is also additive. And, we have G(z0) = 0 and G(z + z0)=G(z) for all
z ∈ R2.

Moreover, we have

G

(
z+

(
π1(z0)

0

))
= G(z) and G

(
z+

(
0

π2(z0)

))
= G(z)

for all z ∈ R2. Hence the additive mapping G : R2 → R2 is a periodic
mapping which implies that G is a bounded mapping on R2. So, if there
exists w ∈ R2 such that |G(w)| ≠ 0 then we can obtain

|G(nw)| = |nG(w)| → ∞ as n → ∞
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which contradicts the bounded property ofG. Therefore, we haveG(z) =
0 for all z ∈ R2. As a result we can have T (z)=Az, where

A =

( 1
π1(z0)

T1

(
π1(z0)

0

)
1

π2(z0)
T1

(
0

π2(z0)

)
1

π1(z0)
T2

(
π1(z0)

0

)
1

π2(z0)
T2

(
0

π2(z0)

)).
Hence T (z)=Az is a linear transformation and we complete the proof.

Theorem 2.2. For any ε > 0, there exists a mapping f : R2 → R2

satisfying

(2.2) |f(x+ y)− f(x)− f(y)| < ε(|x|+ |y|)
for all x,y ∈ R2 such that there is no constant δ ≥ 0 and no additive
function T : R2 → R2 satisfying the condition

|f(x)− T (x)| ≤ δ|x|
for all x ∈ R2. So, we can say about the instability of the Cauchy
equation in R2.

Proof : Let µ := ε
6
√
2
and let ϕ : R → R be given by

ϕ(x) :=

{
µx for |x| < 1
µ x
|x| for |x| ≥ 1.

Note that |ϕ(x)| ≤ µ for all x ∈ R. Define f = (f1, f2) : R2 → R2 by

f(x, y) =
(
f1(x, y), f2(x, y)

)
:=

( ∞∑
n=0

ϕ(2nx)

2n
,

∞∑
n=0

ϕ(2ny)

2n

)
for all (x, y) ∈ R2, then f(0, 0) = (0, 0). It is easily shown that

|f(x, y)|2 = f1(x, y)
2 + f2(x, y)

2 ≤

( ∞∑
n=0

µ

2n

)2

+

( ∞∑
n=0

µ

2n

)2

= 2µ2

( ∞∑
n=0

1

2n

)2

= 8µ2

for all (x, y) ∈ R2. That is, |f(x, y)| ≤ 2
√
2µ for all (x, y) ∈ R2.

Now, we shall prove that there is a ε > 0 such that
(2.3)∣∣f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)

∣∣ ≤ ε
(
|(x1, x2)|+ |(y1, y2)|

)
for all (x1, x2), (y1, y2) ∈ R2.
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• CASE 1◦: If (x1, x2) = (y1, y2) = (0, 0), then (2.3) is fulfilled.

• CASE 2◦: Assume that 0 < |(x1, x2)| + |(y1, y2)| < 1. Then there
exists N ∈ N such that

1

2N
< |(x1, x2)|+ |(y1, y2)| <

1

2N−1
.(2.4)

Hence, we see that

2N−1|(x1, x2)| < 1, 2N−1|(y1, y2)| < 1,

2N−1|(x1, x2) + (y1, y2)| ≤ 2N−1(|(x1, x2)|+ |(y1, y2)|) < 1.

Note that for n = 0, 1, · · · , N − 1 we have 2n ≤ 2N−1. So we get the
followings :

|2nx1|, |2nx2| ≤ |2n(x1, x2)| = 2n|(x1, x2)| < 2N−1|(x1, x2)| < 1,

|2ny1|, |2ny2| ≤ |2n(y1, y2)| = 2n|(y1, y2)| < 2N−1|(y1, y2)| < 1

and

|2n(x1 + y1)|, |2n(x2 + y2)| ≤ |2n(x1 + y1), 2
n(x2 + y2)|

= 2n|(x1, x2) + (y1, y2)| < 2N−1|(x1, x2) + (y1, y2)| < 1.

Therefore, we have

2nx1, 2
nx2, 2

ny1, 2
ny2, 2

n(x1 + y1), 2
n(x2 + y2) ∈ (−1, 1).

Since ϕ is linear on the interval (−1, 1), we find that

ϕ(2n(x1 + y1))− ϕ(2nx1)− ϕ(2ny1) = 0,
ϕ(2n(x2 + y2))− ϕ(2nx2)− ϕ(2ny2) = 0

(2.5)

for n = 0, 1, · · · , N − 1.

Now, we have

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

=
1

|(x1, x2)|+ |(y1, y2)|
·

∣∣∣∣∣
( ∞∑

n=0

ϕ(2n(x1 + y1))

2n
,

∞∑
n=0

ϕ(2n(x2 + y2))

2n

)

−

( ∞∑
n=0

ϕ(2nx1)

2n
,

∞∑
n=0

ϕ(2nx2)

2n

)
−

( ∞∑
n=0

ϕ(2ny1)

2n
,

∞∑
n=0

ϕ(2ny2)

2n

)∣∣∣∣∣.
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Thus we obtain that

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

=
1

|(x1, x2)|+ |(y1, y2)|

·

∣∣∣∣∣
( ∞∑

n=0

ϕ(2n(x1 + y1))

2n
−

∞∑
n=0

ϕ(2nx1)

2n
−

∞∑
n=0

ϕ(2ny1)

2n
,

∞∑
n=0

ϕ(2n(x2 + y2))

2n
−

∞∑
n=0

ϕ(2nx2)

2n
−

∞∑
n=0

ϕ(2ny2)

2n

)∣∣∣∣∣
=

∣∣∣∣∣ 1

|(x1, x2)|+ |(y1, y2)|

( ∞∑
n=0

ϕ(2n(x1 + y1))− ϕ(2nx1)− ϕ(2ny1)

2n
,

∞∑
n=0

ϕ(2n(x2 + y2))− ϕ(2nx2)− ϕ(2ny2)

2n

)∣∣∣∣∣
=

∣∣∣∣∣
( ∞∑

n=0

ϕ(2n(x1 + y1))− ϕ(2nx1)− ϕ(2ny1)

2n
(
|(x1, x2)|+ |(y1, y2)|

) ,

∞∑
n=0

ϕ(2n(x2 + y2))− ϕ(2nx2)− ϕ(2ny2)

2n
(
|(x1, x2)|+ |(y1, y2)|

) )∣∣∣∣∣.
By (2.5), we see that

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

=

∣∣∣∣∣
( ∞∑

n=N

ϕ(2n(x1 + y1))− ϕ(2nx1)− ϕ(2ny1)

2n
(
|(x1, x2)|+ |(y1, y2)|

) ,

∞∑
n=N

ϕ(2n(x2 + y2))− ϕ(2nx2)− ϕ(2ny2)

2n
(
|(x1, x2)|+ |(y1, y2)|

) )∣∣∣∣∣
=

∣∣∣∣∣
( ∞∑

k=0

ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ,

∞∑
k=0

ϕ(2k+N (x2 + y2))− ϕ(2k+Nx2)− ϕ(2k+Ny2)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) )∣∣∣∣∣.



On additive mappings 273

So, we obtain that

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

=

([ ∞∑
k=0

ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2

+

[ ∞∑
k=0

ϕ(2k+N (x2 + y2))− ϕ(2k+Nx2)− ϕ(2k+Ny2)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2) 1
2

=

(∣∣∣∣∣
∞∑
k=0

ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
k=0

ϕ(2k+N (x2 + y2))− ϕ(2k+Nx2)− ϕ(2k+Ny2)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ∣∣∣∣∣
2) 1

2

.

Note that∣∣∣∣∣
∞∑
k=0

ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ∣∣∣∣∣
2

≤

[ ∞∑
k=0

∣∣∣∣∣ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ∣∣∣∣∣
]2

=

[ ∞∑
k=0

∣∣ϕ(2k+N (x1 + y1))− ϕ(2k+Nx1)− ϕ(2k+Ny1)
∣∣

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2

≤

[ ∞∑
k=0

∣∣ϕ(2k+N (x1 + y1))
∣∣+ ∣∣ϕ(2k+Nx1)

∣∣+ ∣∣ϕ(2k+Ny1)
∣∣

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2

≤ 9µ2

[ ∞∑
k=0

1

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2.
By the same argument as above, we also obtain that∣∣∣∣∣

∞∑
k=0

ϕ(2k+N (x2 + y2))− ϕ(2k+Nx2)− ϕ(2k+Ny2)

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ∣∣∣∣∣
2

≤ 9µ2

[ ∞∑
k=0

1

2k+N
(
|(x1, x2)|+ |(y1, y2)|

) ]2.
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Hence we obtain that

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

=
∞∑
k=0

3
√
2µ

2k+N (|(x1, x2)|+ |(y1, y2)|)
<

∞∑
k=0

3
√
2µ

2k
= 6

√
2µ = ε.

• CASE 3◦: We finally assume that |(x1, x2)| + |(y1, y2)| ≥ 1. Then,
we get

|f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|
|(x1, x2)|+ |(y1, y2)|

≤ |f((x1, x2) + (y1, y2))− f(x1, x2)− f(y1, y2)|

≤ 6
√
2µ = ε.

By CASE 1◦, CASE 2◦ and CASE 3◦, we have the inequality (2.3) for
all (x1, x2), (y1, y2) ∈ R2.

To complete the proof we assume that there exists a δ ≥ 0 and an
additive mapping T : R2 → R2 such that

|f(x1, x2)− T (x1, x2)| ≤ δ|(x1, x2)|, for all (x1, x2) ∈ R2,

and prove that the assumption is contradictory. Since f1 and f2 are
defined by means of a uniformly convergent series of continuous func-
tions, they are continuous. So f is continuous. Hence the mapping
T = (T1, T2) is bounded on a neighborhood of (0, 0). Then, by Theorem
2.1 there exists A ∈ M2(R) such that

T (x1, x2) = A

(
x1
x2

)
, (x1, x2) ∈ R2,

where

A =

(
T1(x0,0)

x0

T1(y0,0)
y0

T2(x0,0)
x0

T2(y0,0)
y0

)
for some (x0, y0) containing in a neighborhood of (0, 0). Hence, we get∣∣∣∣f(x1, x2)−A

(
x1
x2

)∣∣∣∣ ≤ δ|(x1, x2)|, (x1, x2) ∈ R2.

So, we see that

|f(x1, x2)| ≤ δ|(x1, x2)|+
∣∣∣∣A(x1x2

)∣∣∣∣ .
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This implies that

(2.6)
|f(x1, x2)|
|(x1, x2)|

≤ δ +

∣∣A(x1

x2

)∣∣
|(x1, x2)|

≤ δ + ∥A∥

for all (x1, x2) ∈ R2 \ {(0, 0)}. On the other hand, by the Archimedean
property, we can choose N ∈ N such that Nµ > δ + ∥A∥. So

2nx1 ∈ (0, 1) for n = 0, 1, · · · , N − 1 if x1 ∈
(
0,

1

2N−1

)
,

2nx2 ∈ (0, 1) for n = 0, 1, · · · , N − 1 if x2 ∈
(
0,

1

2N−1

)
.

For x1, x2 ∈
(
0, 1

2N−1

)
, we get

|f(x1, x2)|
|(x1, x2)|

=
1

|(x1, x2)|

∣∣∣∣∣
( ∞∑

n=0

ϕ(2nx1)

2n
,

∞∑
n=0

ϕ(2nx2)

2n

)∣∣∣∣∣
=

∣∣∣∣∣
( ∞∑

n=0

ϕ(2nx1)

2n|(x1, x2)|
,

∞∑
n=0

ϕ(2nx2)

2n|(x1, x2)|

)∣∣∣∣∣
=

∣∣∣∣∣
(

N−1∑
n=0

µ2nx1
2n|(x1, x2)|

+

∞∑
n=N

ϕ(2nx1)

2n|(x1, x2)|
,

N−1∑
n=0

µ2nx2
2n|(x1, x2)|

+
∞∑

n=N

ϕ(2nx2)

2n|(x1, x2)|

)∣∣∣∣∣.
Thus we have

|f(x1, x2)|
|(x1, x2)|

=

([
N−1∑
n=0

µ2nx1
2n|(x1, x2)|

+

∞∑
n=N

ϕ(2nx1)

2n|(x1, x2)|

]2

+

[
N−1∑
n=0

µ2nx2
2n|(x1, x2)|

+
∞∑

n=N

ϕ(2nx2)

2n|(x1, x2)|

]2) 1
2

.
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Hence we have

|f(x1, x2)|
|(x1, x2)|

≥

([
N−1∑
n=0

µ2nx1
2n|(x1, x2)|

]2
+

[
N−1∑
n=0

µ2nx2
2n|(x1, x2)|

]2) 1
2

=

([
N−1∑
n=0

µx1
|(x1, x2)|

]2
+

[
N−1∑
n=0

µx2
|(x1, x2)|

]2) 1
2

=
Nµ

|(x1, x2)|
(
x21 + x22

) 1
2 = Nµ > δ + ∥A∥,

which contradicts to (2.6).

Remark 2.3. Theorem 2.1 and Theorem 2.2 can be generalized for
Rn (n ∈ N) as follows.

(1) Let T : Rn → Rn be a mapping satisfying the Cauchy equation

T (u+ v) = T (u) + T (v)

for all u,v ∈ Rn. If T is bounded on a small disk B(x, r)={z ∈ Rn | |z−
x| < r} for some x ∈ Rn, then there exists an n× n matrix A such that
T (u)=Au for all u ∈ Rn. Therefore, the mapping T : Rn → Rn is a
linear mapping.

(2) For any ε > 0, there exists a mapping f : Rn → Rn satisfying

|f(x+ y)− f(x)− f(y)| < ε(|x|+ |y|)
for all x,y ∈ Rn such that there is no constant δ ≥ 0 and no additive
function T : Rn → Rn satisfying the condition

|f(x)− T (x)| ≤ δ|x|
for all x ∈ Rn. So, we can say about the instability of the Cauchy
equation in Rn.

References

[1] A. L. Cauchy, Cours d’Analyse de l’Ecole Polytechnique, 1, Analyse algebrique,
V. Paris, 1821.

[2] Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci., 14
(1991), 431–434.

[3] H. Kestelman, On the functional equation f(x+ y) = f(x) + f(y), Fund. Math.,
34 (1946), 144–147.

[4] D. Reem, The Cauchy functional equation as an initial value problem, homomor-
phisms and tori, arXiv:1002.3721v2 [math.CA] (2010), 1–6.

https://books.google.co.kr/books?id=_mYVAAAAQAAJ&printsec=frontcover&hl=ko&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://eudml.org/doc/46657
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/fundamenta-mathematicae/all/34/0/93556/on-the-functional-equation-f-x-y-f-x-f-y
https://arxiv.org/pdf/2007.11014.pdf


On additive mappings 277

Won-Gil Park
Department of Mathematics Education,
Mokwon University
Daejeon 35349, Korea.
E-mail : wgpark@mokwon.ac.kr

Ick-Soon Chang
Department of Mathematics,
Chungnam National University
Daejeon 34134, Korea.
E-mail : ischang@cnu.ac.kr

Jaiok Roh*
Ilsong Liberal Art Schools (Mathematics), Hallym University,
Chuncheon 24252, Korea.
E-mail : joroh@hallym.ac.kr




