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ON ADDITIVE MAPPINGS WITH BOUNDED VALUE
NEAR A POINT

WON-GIL PARK, ICK-SOON CHANG AND JAIOK RoH*

ABSTRACT. In this paper, we will first prove the linearity of addi-
tive mappings with bounded value near a point. And by using our
theorem we will investigate the instability of the Cauchy equation
in R2.

1. Introduction

In 1821, Cauchy [1] proved the following theorem.

ProrosiTiON 1.1. If an additive mapping f : R — R is continuous,
then f is linear.

In 1946, Kestelman [3] proved the following theorem.

PROPOSITION 1.2. Let E1 and Es be normed spaces, and let E be a
subset of Eq. Suppose that there is a 6 > 0 satisfying

{veE v <dé}Cc{z—y:x,yeFE}
If an additive mapping f : E1 — FEs is bounded on E, then f is linear.
In 1991, Gajda [2] also proved the following theorem.

PRrOPOSITION 1.3. Let E1 be a normed space and Fo a Banach space.
And lete >0 and p € R\ {1}. If f: E1 — E5 is a mapping such that

1z +y) = F(=) = F)ll <elllzl” + lyl”)
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for all x,y € E1, then there exists a unique additive mapping T : E1 —
FEs such that

1—-p 2¢
_T PO

for all x € Ey. Moreover, if f(tx) is continuous in t for each fized
x € Eq, then T is linear.

(i

In 2010, Reem [4] proved the following theorem.

PROPOSITION 1.4. If an additive mapping f : R — R is integrable on
some bounded closed interval I, then f is linear.

In this paper, we will present another version and proof of Proposition
1.2 as follows.

THEOREM 1.5. Let T : R? — R? be a mapping satisfying the Cauchy
equation
Tu+v)=T(u)+T(v)
for allu,v € R2. If T is bounded mapping on a small disk B(x,r)={z €
R? | |z—x| < 1} for some x € R?, then there exists a 2x 2 matriz A such
that T'(u) = Au for all u € R%. Therefore, the mapping T : R? — R? is
a linear mapping.

Gajda [2] investigated the instability of the Cauchy equation in R as
follows.

PROPOSITION 1.6. For any € > 0, there exists a mapping f : R — R
satisfying
F@+y) - f@) - F@)] < (2l + ly)
for all x,y € R such that there is no constant § > 0 and no additive
function T : R — R satisfying the condition
|f(z) = T(x)] < é]x|
for all x € R.

In this paper, we will also investigate the instability of the Cauchy
equation in R? as follows.

THEOREM 1.7. For any € > 0, there exists a mapping f : R? — R?
satisfying
[fx+y) = f(x) = f(¥)] <e(x][+[y])

for all x,y € R? such that there is no constant § > 0 and no additive
function T : R? — R? satisfying the condition

[f(x) = T(x)| < x|
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for all x € R?. So we can say about the instability of the Cauchy
equation in R2.

2. Main Results

In this section, we will prove main results.

THEOREM 2.1. Let T : R? — R? be a mapping satisfying the Cauchy
equation

T(u+v)=T(u)+T(v)

for allu,v € R%. If T is bounded on a small disk B(x,r)={z € R? | |z —
x| < r} for some x € R?, then there exists a 2 x 2 matrix A such that
T(u)=Au for all u € R%. Therefore, the mapping T : R?> — R? is a
linear mapping.

Proof : If T = (T1,T3) is bounded on a small disk B(x,r)={z €
R? | |z — x| < r}, then T is bounded on a small disk containing 0 € R2.
Since T is bounded on a small disk containing 0 € R? there exists zg =
(71'1(20),71’2(20)) such that 7T1(Z()) #0, TI'Q(Z()) % 0, where my, o : R2 5 R
are the projection mappings given by m(z,y) := = and m(z,y) = v,
respectively.

Define G : R? — R? by
(2.1)

G(z) == T< m1(2) ) B (m(lzo)T1 (MEJZO)) ﬂz(lm)Tl (m?zo))) <7T1(z)>

ml) ) T \HG ) b)) )

for all z € R?. Then, by the additive property of T, the mapping G
is also additive. And, we have G(zp) = 0 and G(z + z¢)=G(z) for all
z € R2.

Moreover, we have

G (z + (”l(ozﬂ)» —G(z) and G (z + <7T2(0z0)>> = G(2)

for all z € R?. Hence the additive mapping G : R?> — R? is a periodic
mapping which implies that G is a bounded mapping on R2. So, if there
exists w € R? such that |G(w)| # 0 then we can obtain

|G(nw)| = [nG(wW)| 200 as n— oo
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which contradicts the bounded property of G. Therefore, we have G(z) =
0 for all z € R%. As a result we can have T(z)=Az, where

m1(z 0
A= (wl(lzo)Tl( IE) 0)) WQ(IZO)T]‘ (Wg(zo))>
w1 (z 0 ’
ﬂl(lzo)TQ( 1% 0)) 7r2(1z0) Ty (wz(zo))

Hence T'(z)=Az is a linear transformation and we complete the proof.
O

THEOREM 2.2. For any € > 0, there exists a mapping f : R? — R?
satisfying

(2.2) [f(x+y) = f(x) = F¥)] <e(x] + |y])

for all x,y € R? such that there is no constant 6 > 0 and no additive
function T : R? — R? satisfying the condition

[f(x) = T(x)| < d]x]

for all x € R?. So, we can say about the instability of the Cauchy
equation in R2.

Proof : Let u:= 6% and let ¢ : R — R be given by

f px for |z[ <1
Hx) = { ,ué—‘ for |z| > 1.

Note that |¢(x)| < p for all z € R. Define f = (f1, f2) : R> = R? by

Fa) = (i), fola.y)) = (Z ey ¢(§:y)>
n=0 n=0

for all (x,y) € R2, then f(0,0) = (0,0). It is easily shown that
00 2 fo's) 2
H Iz
P )P = fi@w) + folay) < <Z 2> - (Z 2)
n=0 n=0
> 2
_ 2 § _ 2

n=0

for all (z,y) € R2. That is, | f(z,y)| < 2v2u for all (z,y) € R2.
Now, we shall prove that there is a £ > 0 such that
(2.3)
|f((@1,22) + (y1,92)) — flr, 22) — f(yr,92)| < e(|(@1, @2)] + [(y1,92)])

for all (z1,22), (y1,y2) € R%
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e CASE 1°: If (z1,72) = (y1,%2) = (0,0), then (2.3) is fulfilled.
e CASE 2°: Assume that 0 < [(x1,22)| + [(y1,y2)| < 1. Then there
exists N € N such that
1 1
(2.4) N <|(z1,22)| + [(y1,92)| < ON—T"
Hence, we see that
2N71|(x17x2)’ <1, 2N71‘(yl)y2)’ <1,
2V (21, w2) + (y1,w2)| < 2V (|(21, w2)| + (w1, 2)]) < 1.

Note that for n = 0,1,--- , N — 1 we have 2" < 2V~ So we get the
followings :

2", |2"wa| < |2 (21, w2)| = 2"|(z1, m2)| < 2V (w1, w2)] < 1,
12751, 12"ya] < 127 (1, w2)| = 2"|(y1, 92)| < 2V (g1, 40)] < 1
and
12" (21 + y1)], [2" (22 + y2)| < 12" (21 + y1), 2" (22 + 2)|
= 2"|(21, w2) + (y1,92)| < 2V H|(21, w2) + (y1,92)| < 1.

Therefore, we have
2"y, 2" w0, 2"y, 2" y2, 2™ (1 + 1), 2" (22 + 12) € (—1,1).

Since ¢ is linear on the interval (—1,1), we find that

(—
(2.5) $(2"(x1 +y1)) — ¢(2"1) — $(2"y1) = 0,
p(2™(w2 + y2)) — $(2"72) — ¢(2"y2) = 0
forn=0,1,--- ,N — 1.

Now, we have

|f((z1,2) + (y1,92)) — f(z1,22) — f(y1,92)]
(21, z2)[ + [(y1,92)]

_ 1 , ‘ (f:o ¢<2"<a;1n+ ) io ¢<2"<x22n+ m)))

[(z1, z2)| + [(y1,92)]

L H(2"21) o= ¢(2"x L (2" L (2"
- (Zo ¢<2n 1)2_%(1)(2” 2>> - (Z_% ¢(2ny1),2_%¢(232)> '
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Thus we obtain that
|f((z1,22) + (y1,92)) — f(z1,22) — f(y1,92)]

(@1, 22)[ + [(y1,92)]
1

[(z1,22)| + [(y1, y2)|

(Z¢ x1+y1 Z¢2”$1 Z¢2 Y1) 7
Z¢ a:2+y2 Z¢29€2 i¢2y2>'

¢(2™ (21 +y1)) — ¢(2"21) — H(2"Y1)
B !(331,962)|+| Y1,Y2)| (Z ’

2n
Z $(2" (22 + y2)) — H(2"ws) — ¢<2”y2>> '

2n

d(2" (21 + y1)) — #(2"21) — $(2"y1)
(Z (21, 22)] + (1, 92)]) ,

— (2" xz +y2 ) — ¢(2"x2) — $(2"y2)
Z (@1, 22)] + (Y1, 92)1) )'

By (2.5), we see that

|f (1, 22) + (y1,92)) — f(z1,22) — f(y1,92)]
(w1, 22)| + [(y1, y2)|

( i $(2"(x1 + 1)) — H(2"a1) — H(2"y1)
— 2 (|(x1,22)| + (51, 32)])

5 3(2" (s + y2)) — B(2"ws) — ¢<2ny2>>

= 27 (|(21, 22)] + (1, 92)])
_ i (2K N (21 + y1)) — (28N ay) — (28 Ny
prd RN (| (21, 22)| + | (1, 92)]) ’
i P(2M N (29 + y2))

pars KN (| (w1, 2)| + (1, 2) )

— 92 Nay) - ¢<2k+Ny2>> ‘



On additive mappings 273

So, we obtain that
|f((1,22) + (y1,92)) — f21,22) — f(y1,92)]
[(z1, 22)| + [ (y1, y2)|
_ ( $2 02 @1 4 1)~ 62 V) - ¢<2’f+Ny1>] 2
— RN (| (21, 22)| + (1, 92)])
=, G2 (a3 + 1)) — B2 NVas) — 92V
i kz_o 2KV ([(21, 22)| + [(y1,92)]) ] )
- ( i DN (@1 +4)) — (2 V) — 92y ||
pars 2RV (|(21, w2)| + [(y1,92)])
o P25 N (33 + 1)) — p(2F N ag) — ¢(2F N )

X 25N ([, 2)] + (51, 92)])

1
2)2

Note that

[e.e]

d(2F N (21 + 1)) — ¢(2F N xy) — p(2FFNyy) 2
k=0 26N ([(21, 22)| + [(y1,92)])

< i (2N (1 + y1)) — 92 Var) — G2 V) ||
i e 26N (|(1, 22)| + [ (y1,92)])

)
(
oS ‘¢(2k+N(m1—|—y1)) ¢<2k+N ) ¢(2k+Ny1)‘ _
L k=0 2N (|1, )| + [(y1, 92)) ]
_io: ‘¢(2k+N($1+yl) ‘+‘¢ 2k+N:L‘1 ‘+‘¢ 2k+N )| 2
L =0 RN ([ (1, 22)| + [(y1, 92))

IN

N 2
) 1
<9u [sz+N(|(xl’;p2)|—|—|(y1ay2)|)] .

k=0

By the same argument as above, we also obtain that

G2V (1 + 1)) — (2N g) — (26 V) |
prd 2RV ([(21, 22)| + [(y1,92)])

o0

2
) 1
<9u [Z 2k+N(|(1:1,x2)|+|(yl’92)|)] |

k=0




274 W.-G. Park, I.-S. Chang & J. Roh

Hence we obtain that

|f((z1, 22) + (y1,92)) — f(21,22) — f(y1,92)]
[(z1, 2)| + [(y1, y2)|

:Z2k+N(|( 3V2p <23\2/k§u = 6v2u =e.

e CASE 3°: We finally assume that |(z1,22)| + |(y1,92)| > 1. Then,
we get

|f((z1,22) + (y1,92)) — f(z1,22) — f(y1,92)]
(21, z2)| + [(y1, 92)]
< |f((z1,22) + (Y1, 92)) — f(z1,22) — f(y1,92)]
<6V2u =c.
By CASE 1°, CASE 2° and CASE 3°, we have the inequality (2.3) for

all (x1,22), (y1,92) € R
To complete the proof we assume that there exists a 6 > 0 and an
additive mapping T : R?> — R? such that

|f(x1,29) — T(21,22)| < 6|(x1,22)], for all (z1,z9) € R?,

and prove that the assumption is contradictory. Since fi; and fo are
defined by means of a uniformly convergent series of continuous func-
tions, they are continuous. So f is continuous. Hence the mapping
T = (T1,T>) is bounded on a neighborhood of (0,0). Then, by Theorem
2.1 there exists A € M3(R) such that

T(.Tl,xg) = A<x1>, ($1,£U2) S RQ,
€2
where
Ty (z0,0)  T1(y0,0)
A = (TQ(::EEOO’O) T2<ZZOO’O))
xo Yo

for some (g, yo) containing in a neighborhood of (0,0). Hence, we get

e -4(2)

So, we see that

< 8|(z1,22)], (21,22) € R

|f(@1,22)| < 60](21,22)| + 'A<m1> ‘ .

T2
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This implies that

|f (21, 22)] 1AGY|
o) =0 [Gr,ag) =0T

for all (x1,22) € R%\ {(0,0)}. On the other hand, by the Archimedean
property, we can choose N € N such that Ny > ¢ + || A||. So

(2.6)

1
21 € (0,1) for n=0,1,--- N —1if a1 € (O’W>’

1
2nx2€(0’1) forn:O’]_’...7N—1iffE2€ <O’W>

For xq, 29 € (0, 21\%1), we get

|f(z1,22)

(71, 22)]

L [ @2mm) s ¢(2"o)
(@1, m0)] ‘(Z 2n Z 2" )‘
¢(2"x1) ¢ (2"x2)
(St St )\
N-1
- N2 xr1 ¢ 2 xl
B ‘(Z 1’171’2 Z 3717562

n=0
= ;LQI’
2
Thus we have
‘f(x1;$2>‘
(w1, 22)]
2
(S 3 g
- .%'1,.%'2 2”‘ .%'1,1'2
N—1
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Hence we have

|f (@1, z2)|

(1, 22)
[N—1 2 rN-1 2\ 3

w2"xy w2z
> |+ L
(; 2”\($1,9€2)|] Lz:;) 27|(x1, 22)|

rN-1 2 N 2\ 3

_< Z|961,£U2 ] [Z (21, 22)] ] )
Ny 1

= ooy @ +33)? = N>+ Al

which contradicts to (2.6). O

REMARK 2.3. Theorem 2.1 and Theorem 2.2 can be generalized for
R™ (n € N) as follows.
(1) Let T : R™ — R™ be a mapping satisfying the Cauchy equation

T(u+v)=T(u)+T(v)

for allu,v € R™. IfT is bounded on a small disk B(x,r)={z € R" | |z—
x| < r} for some x € R"™, then there exists an n X n matriz A such that
T(u)=Au for all u € R™. Therefore, the mapping T : R" — R" is a
linear mapping.

(2) For any € > 0, there exists a mapping f : R™ — R™ satisfying

[f(x+y) = f(x) = F¥)] <e(x] + |y])

for all x,y € R™ such that there is no constant 6 > 0 and no additive
function T : R™ — R"™ satisfying the condition

|f(x) = T(x)| < d]x|
for all x € R™. So, we can say about the instability of the Cauchy
equation in R™.

References

[1] A. L. Cauchy, Cours d’Analyse de I’Ecole Polytechnique, 1, Analyse algebrique,
V. Paris, 1821.

[2] Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci., 14
(1991), 431-434.

[3] H. Kestelman, On the functional equation f(z +y) = f(x)+ f(y), Fund. Math.,

4 (1946), 144-147.

[4] D. Reem, The Cauchy functional equation as an initial value problem, homomor-

phisms and tori, arXiv:1002.3721v2 [math.CA] (2010), 1-6.


https://books.google.co.kr/books?id=_mYVAAAAQAAJ&printsec=frontcover&hl=ko&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://eudml.org/doc/46657
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/fundamenta-mathematicae/all/34/0/93556/on-the-functional-equation-f-x-y-f-x-f-y
https://arxiv.org/pdf/2007.11014.pdf

On additive mappings 277

Won-Gil Park

Department of Mathematics Education,
Mokwon University

Daejeon 35349, Korea.

E-mail: wgpark@mokwon.ac.kr

Ick-Soon Chang

Department of Mathematics,
Chungnam National University
Daejeon 34134, Korea.

E-mail: ischang@cnu.ac.kr

Jaiok Roh*

Ilsong Liberal Art Schools (Mathematics), Hallym University,
Chuncheon 24252, Korea.

E-mail: joroh@hallym.ac.kr





