ON ADDITIVE MAPPINGS WITH BOUNDED VALUE NEAR A POINT

Won-Gil Park, Ick-Soon Chang and Jaiok Roh*

Abstract

In this paper, we will first prove the linearity of additive mappings with bounded value near a point. And by using our theorem we will investigate the instability of the Cauchy equation in \mathbb{R}^{2}.

1. Introduction

In 1821, Cauchy [1] proved the following theorem.
Proposition 1.1. If an additive mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f is linear.

In 1946, Kestelman [3] proved the following theorem.
Proposition 1.2. Let E_{1} and E_{2} be normed spaces, and let E be a subset of E_{1}. Suppose that there is a $\delta>0$ satisfying

$$
\left\{v \in E_{1}:\|v\|<\delta\right\} \subset\{x-y: x, y \in E\}
$$

If an additive mapping $f: E_{1} \rightarrow E_{2}$ is bounded on E, then f is linear.
In 1991, Gajda [2] also proved the following theorem.
Proposition 1.3. Let E_{1} be a normed space and E_{2} a Banach space. And let $\varepsilon>0$ and $p \in \mathbb{R} \backslash\{1\}$. If $f: E_{1} \rightarrow E_{2}$ is a mapping such that

$$
\|f(x+y)-f(x)-f(y)\|<\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

Received October 21, 2023; Accepted November 16, 2023.
2020 Mathematics Subject Classification: 39B82, 39B72.
Key words and phrases: additive mapping, linear mapping.
This work was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C109489611).

* Correspondence should be addressed to joroh@hallym.ac.kr.
for all $x, y \in E_{1}$, then there exists a unique additive mapping $T: E_{1} \rightarrow$ E_{2} such that

$$
\|f(x)-T(x)\| \leq \frac{1-p}{|1-p|} \frac{2 \varepsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E_{1}$, then T is linear.

In 2010, Reem [4] proved the following theorem.
Proposition 1.4. If an additive mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on some bounded closed interval I, then f is linear.

In this paper, we will present another version and proof of Proposition 1.2 as follows.

Theorem 1.5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a mapping satisfying the Cauchy equation

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$. If T is bounded mapping on a small disk $B(\mathbf{x}, r)=\{\mathbf{z} \in$ $\left.\mathbb{R}^{2}| | \mathbf{z}-\mathbf{x} \mid<r\right\}$ for some $\mathbf{x} \in \mathbb{R}^{2}$, then there exists a 2×2 matrix A such that $T(\mathbf{u})=A \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{2}$. Therefore, the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear mapping.

Gajda [2] investigated the instability of the Cauchy equation in \mathbb{R} as follows.

Proposition 1.6. For any $\varepsilon>0$, there exists a mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
|f(x+y)-f(x)-f(y)|<\varepsilon(|x|+|y|)
$$

for all $x, y \in \mathbb{R}$ such that there is no constant $\delta \geq 0$ and no additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition

$$
|f(x)-T(x)| \leq \delta|x|
$$

for all $x \in \mathbb{R}$.
In this paper, we will also investigate the instability of the Cauchy equation in \mathbb{R}^{2} as follows.

Theorem 1.7. For any $\varepsilon>0$, there exists a mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying

$$
|f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})-f(\mathbf{y})|<\varepsilon(|\mathbf{x}|+|\mathbf{y}|)
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ such that there is no constant $\delta \geq 0$ and no additive function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying the condition

$$
|f(\mathbf{x})-T(\mathbf{x})| \leq \delta|\mathbf{x}|
$$

for all $\mathrm{x} \in \mathbb{R}^{2}$. So we can say about the instability of the Cauchy equation in \mathbb{R}^{2}.

2. Main Results

In this section, we will prove main results.
Theorem 2.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a mapping satisfying the Cauchy equation

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$. If T is bounded on a small disk $B(\mathbf{x}, r)=\left\{\mathbf{z} \in \mathbb{R}^{2}| | \mathbf{z}-\right.$ $\mathbf{x} \mid<r\}$ for some $\mathbf{x} \in \mathbb{R}^{2}$, then there exists a 2×2 matrix A such that $T(\mathbf{u})=A \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{2}$. Therefore, the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear mapping.

Proof : If $T=\left(T_{1}, T_{2}\right)$ is bounded on a small disk $B(\mathbf{x}, r)=\{\mathbf{z} \in$ $\left.\mathbb{R}^{2}| | \mathbf{z}-\mathbf{x} \mid<r\right\}$, then T is bounded on a small disk containing $\mathbf{0} \in \mathbb{R}^{2}$. Since T is bounded on a small disk containing $\mathbf{0} \in \mathbb{R}^{2}$ there exists $\mathbf{z}_{0}=$ $\left(\pi_{1}\left(\mathbf{z}_{0}\right), \pi_{2}\left(\mathbf{z}_{0}\right)\right)$ such that $\pi_{1}\left(\mathbf{z}_{0}\right) \neq 0, \pi_{2}\left(\mathbf{z}_{0}\right) \neq 0$, where $\pi_{1}, \pi_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the projection mappings given by $\pi_{1}(x, y):=x$ and $\pi_{2}(x, y):=y$, respectively.

Define $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
G(\mathbf{z}):=T\binom{\pi_{1}(\mathbf{z})}{\pi_{2}(\mathbf{z})}-\left(\begin{array}{cc}
\frac{1}{\pi_{1}\left(\mathbf{z}_{0}\right)} T_{1}\binom{\pi_{1}\left(\mathbf{z}_{0}\right)}{0} & \frac{1}{\pi_{2}\left(\mathbf{z}_{0}\right)} T_{1}\binom{0}{\pi_{2}\left(\mathbf{z}_{0}\right)} \tag{2.1}\\
\frac{1}{\pi_{1}\left(\mathbf{z}_{0}\right)} T_{2}\binom{\pi_{1}\left(\mathbf{z}_{0}\right)}{0} & \frac{1}{\pi_{2}\left(\mathbf{z}_{0}\right)} T_{2}\binom{0}{\pi_{2}\left(\mathbf{z}_{0}\right)}
\end{array}\right)\binom{\pi_{1}(\mathbf{z})}{\pi_{2}(\mathbf{z})}
$$

for all $\mathbf{z} \in \mathbb{R}^{2}$. Then, by the additive property of T, the mapping G is also additive. And, we have $G\left(\mathbf{z}_{0}\right)=\mathbf{0}$ and $G\left(\mathbf{z}+\mathbf{z}_{0}\right)=G(\mathbf{z})$ for all $\mathbf{z} \in \mathbb{R}^{2}$.

Moreover, we have

$$
G\left(\mathbf{z}+\binom{\pi_{1}\left(\mathbf{z}_{0}\right)}{0}\right)=G(\mathbf{z}) \quad \text { and } \quad G\left(\mathbf{z}+\binom{0}{\pi_{2}\left(\mathbf{z}_{0}\right)}\right)=G(\mathbf{z})
$$

for all $\mathbf{z} \in \mathbb{R}^{2}$. Hence the additive mapping $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a periodic mapping which implies that G is a bounded mapping on \mathbb{R}^{2}. So, if there exists $\mathbf{w} \in \mathbb{R}^{2}$ such that $|G(\mathbf{w})| \neq \mathbf{0}$ then we can obtain

$$
|G(n \mathbf{w})|=|n G(\mathbf{w})| \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

which contradicts the bounded property of G. Therefore, we have $G(\mathbf{z})=$ $\mathbf{0}$ for all $\mathbf{z} \in \mathbb{R}^{2}$. As a result we can have $T(\mathbf{z})=A \mathbf{z}$, where

$$
A=\left(\begin{array}{cc}
\frac{1}{\pi_{1}\left(\mathbf{z}_{0}\right)} T_{1}\binom{\pi_{1}\left(\mathbf{z}_{0}\right)}{0} & \frac{1}{\pi_{2}\left(\mathbf{z}_{0}\right)} T_{1}\binom{0}{\pi_{2}\left(\mathbf{z}_{0}\right)} \\
\frac{1}{\pi_{1}\left(\mathbf{z}_{0}\right)} T_{2}\binom{\pi_{1}\left(\mathbf{z}_{0}\right)}{0} & \frac{1}{\pi_{2}\left(\mathbf{z}_{0}\right)} T_{2}\binom{0}{\pi_{2}\left(\mathbf{z}_{0}\right)}
\end{array}\right) .
$$

Hence $T(\mathbf{z})=A \mathbf{z}$ is a linear transformation and we complete the proof.

THEOREM 2.2. For any $\varepsilon>0$, there exists a mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying

$$
\begin{equation*}
|f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})-f(\mathbf{y})|<\varepsilon(|\mathbf{x}|+|\mathbf{y}|) \tag{2.2}
\end{equation*}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ such that there is no constant $\delta \geq 0$ and no additive function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying the condition

$$
|f(\mathbf{x})-T(\mathbf{x})| \leq \delta|\mathbf{x}|
$$

for all $\mathbf{x} \in \mathbb{R}^{2}$. So, we can say about the instability of the Cauchy equation in \mathbb{R}^{2}.

Proof : Let $\mu:=\frac{\varepsilon}{6 \sqrt{2}}$ and let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\phi(x):= \begin{cases}\mu x & \text { for }|x|<1 \\ \mu \frac{x}{|x|} & \text { for }|x| \geq 1\end{cases}
$$

Note that $|\phi(x)| \leq \mu$ for all $x \in \mathbb{R}$. Define $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right):=\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x\right)}{2^{n}}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n} y\right)}{2^{n}}\right)
$$

for all $(x, y) \in \mathbb{R}^{2}$, then $f(0,0)=(0,0)$. It is easily shown that

$$
\begin{aligned}
|f(x, y)|^{2} & =f_{1}(x, y)^{2}+f_{2}(x, y)^{2} \leq\left(\sum_{n=0}^{\infty} \frac{\mu}{2^{n}}\right)^{2}+\left(\sum_{n=0}^{\infty} \frac{\mu}{2^{n}}\right)^{2} \\
& =2 \mu^{2}\left(\sum_{n=0}^{\infty} \frac{1}{2^{n}}\right)^{2}=8 \mu^{2}
\end{aligned}
$$

for all $(x, y) \in \mathbb{R}^{2}$. That is, $|f(x, y)| \leq 2 \sqrt{2} \mu$ for all $(x, y) \in \mathbb{R}^{2}$.
Now, we shall prove that there is a $\varepsilon>0$ such that

$$
\begin{equation*}
\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right| \leq \varepsilon\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right) \tag{2.3}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.

- CASE 1° : If $\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)=(0,0)$, then (2.3) is fulfilled.
- CASE 2° : Assume that $0<\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|<1$. Then there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{1}{2^{N}}<\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|<\frac{1}{2^{N-1}} \tag{2.4}
\end{equation*}
$$

Hence, we see that

$$
\begin{aligned}
& 2^{N-1}\left|\left(x_{1}, x_{2}\right)\right|<1,2^{N-1}\left|\left(y_{1}, y_{2}\right)\right|<1, \\
& 2^{N-1}\left|\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right| \leq 2^{N-1}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)<1 .
\end{aligned}
$$

Note that for $n=0,1, \cdots, N-1$ we have $2^{n} \leq 2^{N-1}$. So we get the followings :

$$
\begin{aligned}
& \left|2^{n} x_{1}\right|,\left|2^{n} x_{2}\right| \leq\left|2^{n}\left(x_{1}, x_{2}\right)\right|=2^{n}\left|\left(x_{1}, x_{2}\right)\right|<2^{N-1}\left|\left(x_{1}, x_{2}\right)\right|<1, \\
& \left|2^{n} y_{1}\right|,\left|2^{n} y_{2}\right| \leq\left|2^{n}\left(y_{1}, y_{2}\right)\right|=2^{n}\left|\left(y_{1}, y_{2}\right)\right|<2^{N-1}\left|\left(y_{1}, y_{2}\right)\right|<1
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|2^{n}\left(x_{1}+y_{1}\right)\right|,\left|2^{n}\left(x_{2}+y_{2}\right)\right| \leq\left|2^{n}\left(x_{1}+y_{1}\right), 2^{n}\left(x_{2}+y_{2}\right)\right| \\
& \quad=2^{n}\left|\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right|<2^{N-1}\left|\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right|<1 .
\end{aligned}
$$

Therefore, we have

$$
2^{n} x_{1}, 2^{n} x_{2}, 2^{n} y_{1}, 2^{n} y_{2}, 2^{n}\left(x_{1}+y_{1}\right), 2^{n}\left(x_{2}+y_{2}\right) \in(-1,1)
$$

Since ϕ is linear on the interval $(-1,1)$, we find that

$$
\begin{array}{r}
\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{n} x_{1}\right)-\phi\left(2^{n} y_{1}\right)=0, \tag{2.5}\\
\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{n} x_{2}\right)-\phi\left(2^{n} y_{2}\right)=0
\end{array}
$$

for $n=0,1, \cdots, N-1$.
Now, we have

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& =\frac{1}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \cdot \left\lvert\,\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)}{2^{n}}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)}{2^{n}}\right)\right. \\
& \left.\quad-\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}}\right)-\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} y_{1}\right)}{2^{n}}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n} y_{2}\right)}{2^{n}}\right) \right\rvert\, .
\end{aligned}
$$

Thus we obtain that

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& =\frac{1}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& \quad \cdot \left\lvert\,\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)}{2^{n}}-\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}}-\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} y_{1}\right)}{2^{n}}\right.\right. \\
& =\left\lvert\, \frac{\left.\sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)}{2^{n}}-\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}}-\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} y_{2}\right)}{2^{n}}\right) \mid}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|}\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{n} x_{1}\right)-\phi\left(2^{n} y_{1}\right)}{2^{n}}\right.\right. \\
& = \\
& \left.\quad \sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{n} x_{2}\right)-\phi\left(2^{n} y_{2}\right)}{2^{n}}\right) \mid \\
& =\left\lvert\,\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{n} x_{1}\right)-\phi\left(2^{n} y_{1}\right)}{2^{n}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)},\right.\right. \\
& \\
& \left.\quad \sum_{n=0}^{\infty} \frac{\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{n} x_{2}\right)-\phi\left(2^{n} y_{2}\right)}{2^{n}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right) \mid
\end{aligned}
$$

By (2.5), we see that

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& =\left\lvert\,\left(\sum_{n=N}^{\infty} \frac{\phi\left(2^{n}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{n} x_{1}\right)-\phi\left(2^{n} y_{1}\right)}{2^{n}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right.\right. \\
& =\left|\left(\sum_{n=N}^{\infty} \frac{\phi\left(2^{n}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{n} x_{2}\right)-\phi\left(2^{n} y_{2}\right)}{2^{n}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right)\right| \\
& \quad \frac{\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)} \\
& \left.\quad \sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{k+N} x_{2}\right)-\phi\left(2^{k+N} y_{2}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right) \mid
\end{aligned}
$$

So, we obtain that

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& =\left(\left[\sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2}\right. \\
& \left.\quad+\left[\sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{k+N} x_{2}\right)-\phi\left(2^{k+N} y_{2}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2}\right)^{\frac{1}{2}} \\
& =\left(\left|\sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right|^{2}\right. \\
& \left.\quad+\left\lvert\, \sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{k+N} x_{2}\right)-\phi\left(2^{k+N} y_{2}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right.\right)^{2}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right|^{2} \\
& \leq\left[\sum_{k=0}^{\infty}\left|\frac{\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right|^{2}\right. \\
& =\left[\sum_{k=0}^{\infty} \frac{\left|\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)-\phi\left(2^{k+N} x_{1}\right)-\phi\left(2^{k+N} y_{1}\right)\right|}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2} \\
& \leq\left[\sum_{k=0}^{\infty} \frac{\left|\phi\left(2^{k+N}\left(x_{1}+y_{1}\right)\right)\right|+\left|\phi\left(2^{k+N} x_{1}\right)\right|+\left|\phi\left(2^{k+N} y_{1}\right)\right|}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2} \\
& \leq 9 \mu^{2}\left[\sum_{k=0}^{\infty} \frac{1}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2}
\end{aligned}
$$

By the same argument as above, we also obtain that

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty} \frac{\phi\left(2^{k+N}\left(x_{2}+y_{2}\right)\right)-\phi\left(2^{k+N} x_{2}\right)-\phi\left(2^{k+N} y_{2}\right)}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right|^{2} \\
& \leq 9 \mu^{2}\left[\sum_{k=0}^{\infty} \frac{1}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}\right]^{2}
\end{aligned}
$$

Hence we obtain that

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& =\sum_{k=0}^{\infty} \frac{3 \sqrt{2} \mu}{2^{k+N}\left(\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|\right)}<\sum_{k=0}^{\infty} \frac{3 \sqrt{2} \mu}{2^{k}}=6 \sqrt{2} \mu=\varepsilon .
\end{aligned}
$$

- CASE 3° : We finally assume that $\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right| \geq 1$. Then, we get

$$
\begin{aligned}
& \frac{\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|} \\
& \leq\left|f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)-f\left(x_{1}, x_{2}\right)-f\left(y_{1}, y_{2}\right)\right| \\
& \leq 6 \sqrt{2} \mu=\varepsilon
\end{aligned}
$$

By CASE 1°, CASE 2° and CASE 3°, we have the inequality (2.3) for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.

To complete the proof we assume that there exists a $\delta \geq 0$ and an additive mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\left|f\left(x_{1}, x_{2}\right)-T\left(x_{1}, x_{2}\right)\right| \leq \delta\left|\left(x_{1}, x_{2}\right)\right|, \text { for all }\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

and prove that the assumption is contradictory. Since f_{1} and f_{2} are defined by means of a uniformly convergent series of continuous functions, they are continuous. So f is continuous. Hence the mapping $T=\left(T_{1}, T_{2}\right)$ is bounded on a neighborhood of $(0,0)$. Then, by Theorem 2.1 there exists $A \in M_{2}(\mathbb{R})$ such that

$$
T\left(x_{1}, x_{2}\right)=A\binom{x_{1}}{x_{2}},\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

where

$$
A=\left(\begin{array}{ll}
\frac{T_{1}\left(x_{0}, 0\right)}{x_{0}} & \frac{T_{1}\left(y_{0}, 0\right)}{y_{0}} \\
\frac{T_{2}\left(x_{0}, 0\right)}{x_{0}} & \frac{T_{2}\left(y_{0}, 0\right)}{y_{0}}
\end{array}\right)
$$

for some $\left(x_{0}, y_{0}\right)$ containing in a neighborhood of $(0,0)$. Hence, we get

$$
\left|f\left(x_{1}, x_{2}\right)-A\binom{x_{1}}{x_{2}}\right| \leq \delta\left|\left(x_{1}, x_{2}\right)\right|, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

So, we see that

$$
\left|f\left(x_{1}, x_{2}\right)\right| \leq \delta\left|\left(x_{1}, x_{2}\right)\right|+\left|A\binom{x_{1}}{x_{2}}\right|
$$

This implies that

$$
\begin{equation*}
\frac{\left|f\left(x_{1}, x_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|} \leq \delta+\frac{\left|A\binom{x_{1}}{x_{2}}\right|}{\left|\left(x_{1}, x_{2}\right)\right|} \leq \delta+\|A\| \tag{2.6}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. On the other hand, by the Archimedean property, we can choose $N \in \mathbb{N}$ such that $N \mu>\delta+\|A\|$. So

$$
\begin{aligned}
& 2^{n} x_{1} \in(0,1) \text { for } n=0,1, \cdots, N-1 \text { if } x_{1} \in\left(0, \frac{1}{2^{N-1}}\right) \\
& 2^{n} x_{2} \in(0,1) \text { for } n=0,1, \cdots, N-1 \text { if } x_{2} \in\left(0, \frac{1}{2^{N-1}}\right)
\end{aligned}
$$

For $x_{1}, x_{2} \in\left(0, \frac{1}{2^{N-1}}\right)$, we get

$$
\begin{aligned}
& \frac{\left|f\left(x_{1}, x_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|} \\
& =\frac{1}{\left|\left(x_{1}, x_{2}\right)\right|}\left|\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}}\right)\right| \\
& =\left|\left(\sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}, \sum_{n=0}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right)\right| \\
& =\left\lvert\,\left(\sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{1}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}+\sum_{n=N}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right.\right. \\
& \left.\quad \sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{2}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}+\sum_{n=N}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right) \mid .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \frac{\left|f\left(x_{1}, x_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|} \\
& =\left(\left[\sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{1}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}+\sum_{n=N}^{\infty} \frac{\phi\left(2^{n} x_{1}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}\right. \\
& \left.\quad+\left[\sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{2}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}+\sum_{n=N}^{\infty} \frac{\phi\left(2^{n} x_{2}\right)}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \frac{\left|f\left(x_{1}, x_{2}\right)\right|}{\left|\left(x_{1}, x_{2}\right)\right|} \\
& \geq\left(\left[\sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{1}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}+\left[\sum_{n=0}^{N-1} \frac{\mu 2^{n} x_{2}}{2^{n}\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}\right)^{\frac{1}{2}} \\
& =\left(\left[\sum_{n=0}^{N-1} \frac{\mu x_{1}}{\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}+\left[\sum_{n=0}^{N-1} \frac{\mu x_{2}}{\left|\left(x_{1}, x_{2}\right)\right|}\right]^{2}\right)^{\frac{1}{2}} \\
& =\frac{N \mu}{\left|\left(x_{1}, x_{2}\right)\right|}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}=N \mu>\delta+\|A\|
\end{aligned}
$$

which contradicts to (2.6).
Remark 2.3. Theorem 2.1 and Theorem 2.2 can be generalized for $\mathbb{R}^{n}(n \in \mathbb{N})$ as follows.
(1) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping satisfying the Cauchy equation

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. If T is bounded on a small disk $B(\mathbf{x}, r)=\left\{\mathbf{z} \in \mathbb{R}^{n}| | \mathbf{z}-\right.$ $\mathbf{x} \mid<r\}$ for some $\mathbf{x} \in \mathbb{R}^{n}$, then there exists an $n \times n$ matrix A such that $T(\mathbf{u})=A \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{n}$. Therefore, the mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear mapping.
(2) For any $\varepsilon>0$, there exists a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying

$$
|f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})-f(\mathbf{y})|<\varepsilon(|\mathbf{x}|+|\mathbf{y}|)
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ such that there is no constant $\delta \geq 0$ and no additive function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying the condition

$$
|f(\mathbf{x})-T(\mathbf{x})| \leq \delta|\mathbf{x}|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$. So, we can say about the instability of the Cauchy equation in \mathbb{R}^{n}.

References

[1] A. L. Cauchy, Cours d'Analyse de l'Ecole Polytechnique, 1, Analyse algebrique, V. Paris, 1821.
[2] Z. Gajda, On stability of additive mappings, Internat. J. Math. \& Math. Sci., 14 (1991), 431-434.
[3] H. Kestelman, On the functional equation $f(x+y)=f(x)+f(y)$, Fund. Math., 34 (1946), 144-147.
[4] D. Reem, The Cauchy functional equation as an initial value problem, homomorphisms and tori, arXiv:1002.3721v2 [math.CA] (2010), 1-6.

Won-Gil Park
Department of Mathematics Education,
Mokwon University
Daejeon 35349, Korea.
E-mail: wgpark@mokwon.ac.kr
Ick-Soon Chang
Department of Mathematics,
Chungnam National University
Daejeon 34134, Korea.
E-mail: ischang@cnu.ac.kr
Jaiok Roh*
Ilsong Liberal Art Schools (Mathematics), Hallym University, Chuncheon 24252, Korea.
E-mail: joroh@hallym.ac.kr

