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HOLOMORPHIC ANOMALY EQUATION FOR THE
HODGE-GROMOV-WITTEN INVARIANTS OF
ELLIPTIC CURVES

HYENHO LHO

ABSTRACT. We study the modularity and holomorphic anomaly
equation for Hodge-Gromov-Witten invariants of elliptic curves.
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0. Introduction

0.1. Overview

Let E be an elliptic curve. Denote by

Myn(E,d)

the moduli space of degree d stable maps of genus g to ¥ with n mark-
ings. Let

T Mgn(E,d) — Mgy, evi: My, (E,d) — E,
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be the universal structures. For cohomological classes ~i,...,v, €
H*(FE), we define Gromov-Witten classes of E by

CWo a5 s 1= 7 (Mg (B, ) [T evi (7)) € H* (M)
i=1

While the torus localization method introduced in [8] give satisfactory
answers to the Gromov-Witten theories of varieties with appropriate
torus actions, this is not the case for the Gromov-Witten theories of
varieties like ' which do not have such torus actions. There have been
many other methods to study the Gromov-Witten theory of E. See
[6, 18, 19].

Recently there appeared several new techniques which make it pos-
sible to study Gromov-Witten theory of E via the torus localization
method ([4, 10, 11]). We apply the technique in [10] to study the
Gromov-Witten invariants of E via the torus localization method.

2. Hodge-Gormov-Witten invariants

Let E be an elliptic curve. Denote by
E— My,(E,d)

the Hodge bundle. For cohomological classes 7v1,...,7, € H*(E), we
define Hodge-Gromov-Witten classes of E by

HGW, (1, - -+ ) 1= 7 (e(E) My (B, )] Hev;(%)) e H*(M,,).
i=1
Define the generating series
HGWg('Ylv e 77n) = Z Hg,d<717 ce 7'Yn> Qd € H*(Mg,n) ® Q[[QH .

In order to state the holomorphic anomaly equation for the Hodge-
Gromov-Witten classes of F, we define the following series in ¢

L(g) = (1—27¢) 3 = 1+ 9¢+162¢> + ... ,
= 3d—1
(1) C(Q)—qd (log +32 al )

qquO
Co

X(q) =



Hodge Gromov-Witten invariants of elliptic curves 233

We consider the series (1) as series in ), via the change of variable

o0

3d—1)!
Q :—q-Exp(?);qd((d!)g)).

THEOREM 1. For 7y,...,v, € H*(E) we have
HGWy (11, ..., ) € H*(Myy) ® QL' X].

We consider the natural maps
L Mg_Ln_,_Q — ]\4'97717

which glue the last two marked points of a single (n + 2)-pointed curve
of genus g — 1 and

J: M917n1+1 X M927n2+1 — MQJH

which glues the last markings of separate pointed curves for n = nq +no
and g = g1 + g2.

THEOREM 2. For the Hodge-Gromov-Witten series of elliptic curve
we have

d
ﬁHg(ﬁyl’ e 7,7774) :L*Hg—l(’Yla <oy Y, 17 1)
+ Z Jx (Hgl (PYSlﬂq) X HQQ(’YSzvl))
9g=91+g2

{1,....,n} =515,

n
—QZ</’Yi)ﬂ’i'Hg(’Ylw--,%—l,l,%—i—lw-~7’Yn),
i=1 JE

where s, = (Vk)kes, and 1 € H*(E) is the unit.

The derivation of Hy(v1,...,7v,) with respect to X in the holomorphic
anomaly equation of Theorem 2 is well-defined since

Hg(')’b s ,’Yn) € H*(Mg,n) ® Q[Lila X]
by Theorem 1.

The ring of quasi-modular form is the free polynomial algebra

QMOd - Q[E27 E47E6] ’
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where C}, are the weight k Eisenstein series

B, 2 i

n>1 djn

Here, By, are the Bernoulli numbers. The series (1) are related to quasi-
modular forms as follows.

LEMMA 3 ([1]). We have
_G%

3
By = 23 (12X +4-3L%),
E —Cj( 8L3 +9L°)
4 — L6 - + 9
CG
Ee = 2 (—8L>+36L°% — 27L7).

Lo
Applying the Hodge integral formula in [7] to the result of [18], we obtain
the following theorem.

THEOREM 4. For v1,...,v, € H*(E) we have

HGWQ(’}/l? L 77”) S H*(Mg7n) ® QMOCI .

If we compare Theorem 1 and Theorem 4, Lemma 3 yields some tauto-

logical relations on H*(Mg ). It is interesting question whether these
relations can be obtained from Pixton’s relations in [20].

0.3. Acknowledgments
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1. Hodge-Gromov-Witten invariants

We review here Hodge-Gromov-Witten theory for chain polynomials
studied in [10].

Let P(w) = P(wi,...,wyn) be the weighted projective space with
weights wy, ..., wy € N. Consider a smooth hypersurface X in P(w) of
degree m polynomial

o'y + -+ Jan + ol
Let T = (C*)V act diagonally on the vector space CV with weight

—t1,..., —tN.
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Denote the equivariant virtual fundamental class by
[M g (P(w), d)]"™ € H (Mgn(P(w),d)).

THEOREM 5. [10, Theorem 3.3] Let 71, . .., vy, be ambient cohomology
classes on X, i.e. pulled back from P(w). For g, n, d € N with 29 — 2 +
n > 0, we have

e(EY) - [Myn(X,d)]"™"

\\:]z

= lim [er(EY) - (M n (Plw), d)] "7 - e (R, f*O(d)) - [ evi ()]
In the above equation, the class ep(Rm, f*O(d)) is defined after lo-
calization. We use the specialization
J
tiyn = [J(~an)t
k=1
for 0 < j < N before taking the limit on the right-hand side of the
equation.

2. localization

2.1. Overview

We summarize here generating series in ¢ which arise in the genus 0
theory of Gromov-Witten invariants. The series will play an important
role in the proof of holomorphic anomaly equation for an elliptic curve.

We fix a torus action T = (C*) on P? with weights —\g, —A1, — A2
on the vector space C3. The T-weight on the fiber over p; of the anti-
canonical bundle

Op2(3) — P?
is given by —3A\;.

For each T-fixed point p; € P2, define

ei = e(T,(P?))/(3N:)

where e(T},(P?)) is the equivariant Euler class of the tangent space of

P? at p;. Let
(2) b = Hj;éi(H - tj)

3ti€i ) (b e(b € T( )
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be cycle classes.
Define

HZ:1(3H + kz) 2
I(q,z) := H*(P .
0= T e Ol

We define for : = 0,1, 2,

We write

Define series Cy, C1, Cy and Na(q), N3(q), Na(q) by the following
equations,

1
]I:CO‘FO(;),
(H + 2 1)8(1) = CyH + Ny + 0(3)
qu — U1 2 p )
d 1
(H + zd—q)S(H) = CoH? + N3H + N, + O(2)-

The following relations were obtained in [21],

(3) Co =03,
CoC1Cy = 3.

The following equations were proven in [15].
1
52@(01 L)+ Ny =0,

i
(4) Zticl—i-Ng—Zti—Ngg:O,
A 7

AT 3
(Zti>2(14€g)L _Ztitj(l —Co)Co+N4 =0.
i 0 i>j
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2.2. Further calculations

Using Birkhoff factorization, an evaluation of the series $(H7) can be
obtained from the I-function, see [13]:

8(1) = é}o
(5) s(ar) = M50 51N2S(1) |
S(H2) _ M S(H) - NggiH) — N4S(1)

Here M := H + zqd%.
The function I satisfies following Picard-Fuchs equation

2
(6) (H(M — ) —q(3M)(3M+z)(3M+2z)>]I:0.
=0

The restriction I|y—y, admits following asymptotic expansion
(7) ]I’H:)\i = 6‘”/2 (Ri,O + Ri’lz + Ri,222 + ... ) .
The series p; and R; ) can be explicitly calculated by solving differ-

ential equations obtained from the coefficient of z* in the Picard-Fuchs
equation (6),

pilq) = /Oq B0,

X
Li(q) ( ti(to — t1)(ti — ta) )
ti  \Li(q)?(to + t1 + t2) — 2L;(q)(tot1 + tita + tato) + 3totits

Rio(q) =

Here L;(q) is the root of the following equation
(£ —to)(L —t1)(L —t2) —q(3£)° =0,

with £|q:0 = 1.
From the equation (5) and (7), we can prove the series

$:(1) = S(1)|f=,» $i(H) = S(H)| =, Si(H?) = S(H?)| =,

=
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have the following asymptotic expansions;

Si(l) = 6% <Ri,00 + Rz’701Z + Ri,ogzz + .. ) ,

K

Si(H) =e= (Ri,w + Rig1z+ Ripe2® + .. ) ,

Hiq

Si(Hz) =€z (R@g() + lez + Ri,2222 +.. ) .

Denote by D the differential operator qd%. From (5), we obtain the
following result.

LEMMA 6. We have

1

Ri n :7Rz )

10 CO 70

1

R;1n = ((Lz — No)Rion + DRi,Onfl) ,
1

R; on = ((Li — N3)R;1n, — NaR;on + DRi,ln—l) .
2

Let X = DC—C;O. The following equation was proven in [16],

2
(8) X2—(L3—1)X—|—DX—§(L3—1):0.
ProrosiTiON 7. We have
R.
Lk e Qltg, t, t2)[Co, Cy ty Ly L3, X
R; 00
Proof. The differential equations
L
DL :§(L3 —1),

Li(L; — to)(L; — t1)(L; — t2)
(t() + 1t + tg)LQ — Q(totl + t1to + tQto)L + 3totits

can be easily obtained from the definitions of L and L;. Then the Propo-
sition follows from equations (3),(4),(8) and Lemma 6. O

DL; =

2.3. Graphs
For the genus g and the number of markings n in the stable range
20—-2+n>0,

a decorated graph I' consists of the data (V,E,N, g, p) such that

(a) V is the vertex set,
(b) E is the edge set (including self-edges),
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(¢) N:{1,2,...,n} — V is the marking assignment,
(d) g:V — Z is a genus assignment with

g=> &) +h'(r

veV

and for which (V,E,N,g) is stable,
(e) p:V — (P)T is an assignment of a T-fixed point p(v) to each
vertex v € V.

We denote by Gy, the set of decorated graphs of genus g with n
markings.

2.4. Localization formula

Here we apply the localization method to twisted Gromov-Witten
theory of P2. Consider the moduli space

M, (P2, d)

of degree d stable maps of connected curves of genus g with n markings.
Let

T Myn(P2,d) — Mgy, , evi: My,(P? d) — P2, f:C — P?
be the universal structures. Define the twisted Gromov-Witten classes
of P? by
(V1oAY g = T (eT(EV) UeT (R f*O(3)) N [M .0 (P2, d)]Vir’T>
cH *(Mg,n) .

We define the twisted Gromov-Witten series of P2 by

H (1) = 3¢ (o Ao € H* (W) @ Qllg]]
d=0

Consider the forgetful map
Pm - ngn_;'_m — Mg,n .

For a power series f(z) € 22Q[[z]] with vanishing constant and linear
terms, we define

o0

W) = D2 () nim) € H* (M),

m=0
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Recall the cycle classes ¢; and ¢’ in (2). We define a;; by the following

equation
Z(ﬁz@(bl - ZainiQ@Hj.
i

/[:7j

For a decorated graph I' € Gy, and (a1,...,a,) € Z", we assign the
following factors to vertex, leg and edge:

e Forv eV, let

_ (P .
Ko —< o) ) Obs (z z ZRP(U 007 )
where
Obsp(y) = (ﬁ 11 (o) —t; *Ci)>
i=1 j7#p(v)

Ece

( s ) : (f[(tgp(v) - ci)) .

with c1, ..., ¢y are Chern roots of the Hodge bundle,

e Forl el,let B = Rp(vl),alkwlkv where v(l) € V is the vertex to
which the leg is assigned.

e For e € E, let

=1

Zi,j Qg ( 2 heo Rp(vl),ik¢’f> (E;é“;o Rp(vz),jkwlf)
V1 + o

where v1,v9 are the vertices adjacednt to the edge and 1 and 9
are the 1-classes corresponding to the half-edges.

5o =

Applying the localization strategy to the series H, !;r (V1 yn) We
obtain the following result.

PROPOSITION 8. We have

HI(H™,... H") = Y Aut [ IESIE HBZ}

I'eGyn veV  ecE leL
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3. Holomorphic anomlay equation

3.1. Proof of Theorem 1

Using the argument of [8, Section 2.3] we modify Theorem 8. Define
the series P; ,,; by the following equations

- Rt = B -5 5 (3 R

k=0

1\” 1 \*
We obtain the equality

9) HIH™,... H") =Y Aut [ I17II° HBZ}

IeGyn veV ecE leL

with

_ Pz 1-g
o forveV, kr, = <%) ( le(tg—ci)>n(z—z(zzo:0 Pp(v)7oozk)) ,
where ¢; are Chern roots of the Hodge bundle,
o forlel, B = Pp(vz),azkwlka where v(l) € V is the vertex to which
the leg is assigned,
o fore € E,

~ Zzg @ij ( > ko Pp(m),ikT/)]f) ( > ko Pp(vz),jk%g)
de =
Y1+ P2

where v1,v9 are the vertices adjacednt to the edge and 1 and 9
are the 1-classes corresponding to the half-edges.

LEMMA 9. We have
Py € Q[to, t1,2][Co, Cy ™, Liy, L3, X] .

Moreover, if we consider P; ) as polynomials in L;, P; ni and Pj ), are
same polynomials for all 0 < i,j < 2.

LEMMA 10. We have

dc € Qlto, t1, ta)[Lp(or)s Lpgws): L2, X] .
Recall L;(q) are roots of the equation

(£ —to)(£L = 1) (L — t2) —q(3L)° =0

If f(zo,x1,22) € Qlto, t1,t2][x0, 1, x2] is & symmetric polynomial with
respect to xq, x1, 2, we have

f(LO; Ly, LQ) € @[to,tl,tg][L3] .
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Therefore if we apply Theorem 5 to our case, Theorem 1 follows from
(9), Lemma 9 and Lemma 10.
3.2. Proof of Theorem 2
We rewrite equation (9)
Hy(H™,...,H™)= Y Contr.
’YeGg,n

Let I' € Gy, be a decorated graph. Denote by F be the set of half-
edges. From equation (9), we have

Contr = ]A o Z H Cont (v) H Cont?(e) H ContR(1)

A€ZF veV ecE leL

where the vertex, edge and leg contributions with incident flag A-values
(a1,...,ayn) and (b1, by) and (c) respectively are

ContR(v) = [m (z — z(i Pp(v),oozk)ﬂr{?:lﬁrl ,

=0

Contp [‘IU(Z p(v1) zk¢1> (Z (vg)jk¢2):| P21yt ybamiok

COHtF(Z) = P(W),alcwl .

In the above expression, the subscript signifies a signed sum of the re-
spective coefficients. Fix an edge f € E(I'):

(i) if I is connected after deleting f, denote the resulting graph by
F?c S Gg71,n+2,

(ii) if T is disconnected after deleting f, denote the resulting two
graphs by
I} € Ggyni+1 and T3 € G,y

where g = g1 + g2 and n = n; + no.

Suppose f connect the T-fixed points p;,p; € P2. Let the A-values of
the corresponding half-edges be (k,[). By Lemma 6 we have

OContR(f)  (=1)+*+3

X L

Rp(vl),lk—lRp(vg),ll—l .
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(i) If T is connected after deleting f, we have

1 dConth(
[Aut(T)] AXZ; (3012) F H Contft(v) [ Contp(e

e€E, e#f

>0
1
= §ContF?(H,H) .
(ii) If I is disconnected after deleting f, we obtain

1 3C £
|Aut(T)| AZ <3CQ) = F H Contf (v H Cont? (e

1
EZFZO veV ecE,e#f

1
= §Contp} (H)Contpi (H)

The above two equations for all the edges of all the graphs I' € Gy,
explain the first two terms on the right-hand side of the equation in
Theorem 2.

Similar argument for the leg [ € L(I") yields the last term in the
equation of Theorem 2 from the following observation

OP; o, 0
0X ’
8Pi’1k Cg
ax ﬁPi,O k=1,

which can be easily obtained by the first two equations in Lemma 6.
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