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HOLOMORPHIC ANOMALY EQUATION FOR THE

HODGE-GROMOV-WITTEN INVARIANTS OF

ELLIPTIC CURVES

Hyenho Lho

Abstract. We study the modularity and holomorphic anomaly
equation for Hodge-Gromov-Witten invariants of elliptic curves.
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0. Introduction

0.1. Overview

Let E be an elliptic curve. Denote by

Mg,n(E, d)

the moduli space of degree d stable maps of genus g to E with n mark-
ings. Let

π :Mg,n(E, d) −→Mg,n , evi :Mg,n(E, d) −→ E ,
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be the universal structures. For cohomological classes γ1, . . . , γn ∈
H∗(E), we define Gromov-Witten classes of E by

GWg,d(γ1, . . . , γn) := π∗

(
[Mg,n(E, d)]

vir
n∏
i=1

ev∗i (γi)
)
∈ H∗(Mg,n) .

While the torus localization method introduced in [8] give satisfactory
answers to the Gromov-Witten theories of varieties with appropriate
torus actions, this is not the case for the Gromov-Witten theories of
varieties like E which do not have such torus actions. There have been
many other methods to study the Gromov-Witten theory of E. See
[6, 18, 19].

Recently there appeared several new techniques which make it pos-
sible to study Gromov-Witten theory of E via the torus localization
method ([4, 10, 11]). We apply the technique in [10] to study the
Gromov-Witten invariants of E via the torus localization method.

0.2. Hodge-Gormov-Witten invariants

Let E be an elliptic curve. Denote by

E −→Mg,n(E, d)

the Hodge bundle. For cohomological classes γ1, . . . , γn ∈ H∗(E), we
define Hodge-Gromov-Witten classes of E by

HGWg,d(γ1, . . . , γn) := π∗

(
e(E) · [Mg,n(E, d)]

vir
n∏
i=1

ev∗i (γi)
)
∈ H∗(Mg,n) .

Define the generating series

HGWg(γ1, . . . , γn) :=
∞∑
d=0

Hg,d(γ1, . . . , γn)Q
d ∈ H∗(Mg,n)⊗Q[[Q]] .

In order to state the holomorphic anomaly equation for the Hodge-
Gromov-Witten classes of E, we define the following series in q

L(q) = (1− 27q)−
1
3 = 1 + 9q + 162q2 + . . . ,

C0(q) = q
d

dq

(
log(q) + 3

∞∑
d=1

qd
(3d− 1)!

(d!)3

)
,(1)

X(q) =
q ddqC0

C0
.
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We consider the series (1) as series in Q, via the change of variable

Q := q · Exp
(
3

∞∑
d=1

qd
(3d− 1)!

(d!)3

)
.

Theorem 1. For γ1, . . . , γn ∈ H∗(E) we have

HGWg(γ1, . . . , γn) ∈ H∗(Mg,n)⊗Q[L±1, X] .

We consider the natural maps

ι :Mg−1,n+2 →Mg,n ,

which glue the last two marked points of a single (n+ 2)-pointed curve
of genus g − 1 and

j :Mg1,n1+1 ×Mg2,n2+1 →Mg,n ,

which glues the last markings of separate pointed curves for n = n1+n2
and g = g1 + g2.

Theorem 2. For the Hodge-Gromov-Witten series of elliptic curve
we have

d

dX
Hg(γ1, . . . , γn) =ι∗Hg−1(γ1, . . . , γn, 1, 1)

+
∑

g = g1 + g2
{1, . . . , n} = S1 ⊔ S2

j∗

(
Hg1(γS1 , q)⊠ Hg2(γS2 , 1)

)

− 2
n∑
i=1

(∫
E
γi

)
ψi · Hg(γ1, . . . , γi−1, 1, γi+1, . . . , γn) ,

where γSi = (γk)k∈Si
and 1 ∈ H∗(E) is the unit.

The derivation of Hg(γ1, . . . , γn) with respect to X in the holomorphic
anomaly equation of Theorem 2 is well-defined since

Hg(γ1, . . . , γn) ∈ H∗(Mg,n)⊗Q[L±1, X]

by Theorem 1.

The ring of quasi-modular form is the free polynomial algebra

QMod = Q[E2, E4, E6] ,
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where Ck are the weight k Eisenstein series

Ek(q) = − Bk
k · k!

+
2

k!

∑
n≥1

∑
d|n

dk−1qn .

Here, Bk are the Bernoulli numbers. The series (1) are related to quasi-
modular forms as follows.

Lemma 3 ([1]). We have

E2 =
C2
0

L3
(12X + 4− 3L3) ,

E4 =
C4
0

L6
(−8L3 + 9L6) ,

E6 =
C6
0

L9
(−8L3 + 36L6 − 27L9) .

Applying the Hodge integral formula in [7] to the result of [18], we obtain
the following theorem.

Theorem 4. For γ1, . . . , γn ∈ H∗(E) we have

HGWg(γ1, . . . , γn) ∈ H∗(Mg,n)⊗ QMod .

If we compare Theorem 1 and Theorem 4, Lemma 3 yields some tauto-
logical relations on H∗(Mg,n). It is interesting question whether these
relations can be obtained from Pixton’s relations in [20].

0.3. Acknowledgments

This work was supported by research fund of Chungnam National
University.

1. Hodge-Gromov-Witten invariants

We review here Hodge-Gromov-Witten theory for chain polynomials
studied in [10].

Let P(w) = P(w1, . . . , wN ) be the weighted projective space with
weights w1, . . . , wN ∈ N. Consider a smooth hypersurface X in P(w) of
degree m polynomial

xa11 x2 + · · ·+ x
aN−1

N−1 xN + xaNN .

Let T = (C∗)N act diagonally on the vector space CN with weight

−t1, . . . ,−tN .
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Denote the equivariant virtual fundamental class by

[Mg,n(P(w), d)]vir,T ∈ HT
∗ (Mg,n(P(w), d)) .

Theorem 5. [10, Theorem 3.3] Let γ1, . . . , γn be ambient cohomology
classes on X, i.e. pulled back from P(w). For g, n, d ∈ N with 2g − 2 +
n > 0, we have

e(E∨) · [Mg,N (X, d)]
vir ·

N∏
i=1

ev∗i (γi)

= lim
t=0

[
eT (E∨) · [Mg,N (P(w), d)]vir,T · eT (Rπ∗f∗O(d)) ·

N∏
i=1

ev∗i (γi)
]

In the above equation, the class eT (Rπ∗f
∗O(d)) is defined after lo-

calization. We use the specialization

tj+1 =

j∏
k=1

(−ak)t

for 0 ≤ j ≤ N before taking the limit on the right-hand side of the
equation.

2. localization

2.1. Overview

We summarize here generating series in q which arise in the genus 0
theory of Gromov-Witten invariants. The series will play an important
role in the proof of holomorphic anomaly equation for an elliptic curve.

We fix a torus action T = (C∗)3 on P2 with weights −λ0,−λ1,−λ2
on the vector space C3. The T-weight on the fiber over pi of the anti-
canonical bundle

OP2(3) → P2

is given by −3λi.
For each T-fixed point pi ∈ P2, define

ei = e(Tpi(P
2))/(3λi) ,

where e(Tpi(P2)) is the equivariant Euler class of the tangent space of
P2 at pi. Let

ϕi =

∏
j ̸=i(H − tj)

3tiei
, ϕi = eiϕi ∈ H∗

T(P2)(2)
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be cycle classes.

Define

I(q, z) :=

∞∑
d=0

∏d
k=1(3H + kz)∏2

i=0

∏d
k=1(H + z − λi)

∈ H∗(P2)⊗Q[[q]] .

We define for i = 0, 1, 2 ,

Si(γ) := ei⟨⟨
ϕi

z − ψ
, γ⟩⟩0+0,2 .

We write

S(γ) =

2∑
i=0

ϕiSi(γ) .

Define series C0, C1, C2 and N2(q), N3(q) , N4(q) by the following
equations,

I =C0 + O(
1

z
) ,

(H + z
d

dq
)S(1) =C1H +N2 + O(

1

z
) ,

(H + z
d

dq
)S(H) =C2H

2 +N3H +N4 + O(
1

z
) .

The following relations were obtained in [21],

C0 =C2 ,(3)

C0C1C2 =L3 .

The following equations were proven in [15].

1

2

∑
i

ti(C1 − L3) +N2 = 0 ,∑
i

tiC1 +N2 −
∑
i

ti −N3 = 0 ,(4)

(∑
i

ti

)2 (1− C4
0 )L

3

4C2
0

−
∑
i>j

titj(1− C0)C0 +N4 = 0 .
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2.2. Further calculations

Using Birkhoff factorization, an evaluation of the series S(Hj) can be
obtained from the I-function, see [13]:

S(1) =
I

C0
,

S(H) =
MS(1)−N2 S(1)

C1
,(5)

S(H2) =
MS(H)−N3S(H)−N4S(1)

C2
.

Here M := H + z q ddq .

The function I satisfies following Picard-Fuchs equation

( 2∏
i=0

(M− λi)− q(3M)(3M+ z)(3M+ 2z)
)
I = 0 .(6)

The restriction I|H=λi admits following asymptotic expansion

I|H=λi = eµi/z
(
Ri,0 +Ri,1z +Ri,2z

2 + . . .
)
.(7)

The series µi and Ri,k can be explicitly calculated by solving differ-

ential equations obtained from the coefficient of zk in the Picard-Fuchs
equation (6),

µi(q) =

∫ q

0

Li(x)− ti
x

dx ,

Ri,0(q) =
Li(q)

ti

( ti(t0 − t1)(ti − t2)

Li(q)2(t0 + t1 + t2)− 2Li(q)(t0t1 + t1t2 + t2t0) + 3t0t1t2

) 1
2
,

Here Li(q) is the root of the following equation

(L − t0)(L − t1)(L − t2)− q(3L)3 = 0 ,

with L|q=0 = ti.

From the equation (5) and (7), we can prove the series

Si(1) = S(1)|H=ti , Si(H) = S(H)|H=ti , Si(H
2) = S(H2)|H=ti
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have the following asymptotic expansions;

Si(1) = e
µi
z

(
Ri,00 +Ri,01z +Ri,02z

2 + . . .
)
,

Si(H) = e
µi
z

(
Ri,10 +Ri,11z +Ri,12z

2 + . . .
)
,

Si(H
2) = e

µi
z

(
Ri,20 +Ri,21z +Ri,22z

2 + . . .
)
.

Denote by D the differential operator q ddq . From (5), we obtain the

following result.

Lemma 6. We have

Ri,0n =
1

C0
Ri,0 ,

Ri,1n =
1

C1

(
(Li −N2)Ri,0n + DRi,0n−1

)
,

Ri,2n =
1

C2

(
(Li −N3)Ri,1n −N4Ri,0n + DRi,1n−1

)
.

Let X = DC0
C0

. The following equation was proven in [16],

X2 − (L3 − 1)X + DX − 2

9
(L3 − 1) = 0 .(8)

Proposition 7. We have
Ri,nk
Ri,00

∈ Q[t0, t1, t2][C0, C
−1
0 , Li, L

−3, X] .

Proof. The differential equations

DL =
L

3
(L3 − 1) ,

DLi =
Li(Li − t0)(Li − t1)(Li − t2)

(t0 + t1 + t2)L2 − 2(t0t1 + t1t2 + t2t0)L+ 3t0t1t2

can be easily obtained from the definitions of L and Li. Then the Propo-
sition follows from equations (3),(4),(8) and Lemma 6.

2.3. Graphs

For the genus g and the number of markings n in the stable range

2g − 2 + n > 0 ,

a decorated graph Γ consists of the data (V,E,N, g, p) such that

(a) V is the vertex set,
(b) E is the edge set (including self-edges),
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(c) N : {1, 2, . . . , n} → V is the marking assignment,
(d) g : V → Z is a genus assignment with

g =
∑
v∈V

g(v) + h1(Γ)

and for which (V,E,N, g) is stable,
(e) p : V → (P2)T is an assignment of a T-fixed point p(v) to each

vertex v ∈ V.

We denote by Gg,n the set of decorated graphs of genus g with n
markings.

2.4. Localization formula

Here we apply the localization method to twisted Gromov-Witten
theory of P2. Consider the moduli space

Mg,n(P2, d)

of degree d stable maps of connected curves of genus g with n markings.
Let

π :Mg,n(P2, d) →Mg,n , evi :Mg,n(P2, d) → P2 , f : C → P2

be the universal structures. Define the twisted Gromov-Witten classes
of P2 by

⟨γ1, . . . , γn⟩g,n := π∗

(
eT(E∨) ∪ eT(Rπ∗f∗O(3)) ∩ [Mg,n(P2, d)]vir,T

)
∈ H∗(Mg,n) .

We define the twisted Gromov-Witten series of P2 by

HT
g (γ1, . . . , γn) =

∞∑
d=0

qd · ⟨γ1, . . . , γn⟩g,n ∈ H∗(Mg,n)⊗Q[[q]] .

Consider the forgetful map

pm :Mg,n+m →Mg,n .

For a power series f(z) ∈ z2Q[[z]] with vanishing constant and linear
terms, we define

κ(f) =
∞∑
m=0

1

m!
pm∗(f(ψn+1) . . . f(ψn+m)) ∈ H∗(Mg,n) .
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Recall the cycle classes ϕi and ϕ
i in (2). We define aij by the following

equation ∑
i

ϕi ⊗ ϕi =
∑
i,j

aijH
i ⊗Hj .

For a decorated graph Γ ∈ Gg,n and (a1, . . . , an) ∈ Zn, we assign the
following factors to vertex, leg and edge:

• For v ∈ V, let

κv =
(P 2

p(v),00

ep(v)

)1−g
Obsp(v) · κ

(
z − z(

∞∑
k=0

Rp(v),00z
k)
)
,

where

Obsp(v) =
( g∏
i=1

∏
j ̸=p(v)

(tp(v) − tj − ci)
)

·
( g∏
i=1

(3tp(v) − ci)
)
·
( g∏
i=1

(t3p(v)− ci)
)
.

with c1, . . . , cg are Chern roots of the Hodge bundle ,

• For l ∈ L, let Bl = Rp(vl),alkψ
k
l , where v(l) ∈ V is the vertex to

which the leg is assigned.
• For e ∈ E, let

δe =

∑
i,j aij

(∑∞
k=0Rp(v1),ikψ

k
1

)(∑∞
k=0Rp(v2),jkψ

k
2

)
ψ1 + ψ2

where v1,v2 are the vertices adjacednt to the edge and ψ1 and ψ2

are the ψ-classes corresponding to the half-edges.

Applying the localization strategy to the series HT
g (γ1, . . . , γn) we

obtain the following result.

Proposition 8. We have

HT
g (H

a1 , . . . ,Han) =
∑

Γ∈Gg,n

1

Aut(Γ)

[
Γ,

∏
v∈V

κv
∏
e∈E

δe
∏
l∈L

Bl

]
.
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3. Holomorphic anomlay equation

3.1. Proof of Theorem 1

Using the argument of [8, Section 2.3] we modify Theorem 8. Define
the series Pi,nk by the following equations

∞∑
k=0

Pi,nkz
k = Exp

(
−

∞∑
k=1

Ni,2k−1

2k − 1
z2k−1

)( ∞∑
k=0

Ri,nkz
k
)

where Ni,k =
(
− 1

3ti

)k
+
∑

j ̸=i

(
1

ti−tj

)k
.

We obtain the equality

HT
g (H

α1 , . . . ,Hαn) =
∑

Γ∈Gg,n

1

Aut(Γ)

[
Γ,

∏
v∈V

κ̃v
∏
e∈E

δ̃e
∏
l∈L

B̃l

]
,(9)

with

• for v ∈ V, κ̃v =
(
P 2
p(v),00

ep(v)

)1−g(∏g
i=1(t3−ci)

)
κ
(
z−z(

∑∞
k=0 Pp(v),00z

k)
)
,

where ci are Chern roots of the Hodge bundle ,

• for l ∈ L, B̃l = Pp(vl),αlkψ
k
l , where v(l) ∈ V is the vertex to which

the leg is assigned,
• for e ∈ E,

δ̃e =

∑
i,j aij

(∑∞
k=0 Pp(v1),ikψ

k
1

)(∑∞
k=0 Pp(v2),jkψ

k
2

)
ψ1 + ψ2

where v1,v2 are the vertices adjacednt to the edge and ψ1 and ψ2

are the ψ-classes corresponding to the half-edges.

Lemma 9. We have

Pi,nk ∈ Q[t0, t1, t2][C0, C
−1
0 , Li, L

−3, X] .

Moreover, if we consider Pi,nk as polynomials in Li, Pi,nk and Pj,nk are
same polynomials for all 0 ≤ i, j ≤ 2.

Lemma 10. We have

δ̃e ∈ Q[t0, t1, t2][Lp(v1), Lp(v2), L
−3, X] .

Recall Li(q) are roots of the equation

(L − t0)(L − t1)(L − t2)− q(3L)3 = 0 .

If f(x0, x1, x2) ∈ Q[t0, t1, t2][x0, x1, x2] is a symmetric polynomial with
respect to x0, x1, x2, we have

f(L0, L1, L2) ∈ Q[t0, t1, t2][L
3] .
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Therefore if we apply Theorem 5 to our case, Theorem 1 follows from
(9), Lemma 9 and Lemma 10.

3.2. Proof of Theorem 2

We rewrite equation (9)

HT
g (H

α1 , . . . ,Hαn) =
∑

γ∈Gg,n

ContΓ .

Let Γ ∈ Gg,n be a decorated graph. Denote by F be the set of half-
edges. From equation (9), we have

ContΓ =
1

|Aut(Γ)|
∑

A∈ZF
>0

∏
v∈V

ContAΓ(v)
∏
e∈E

ContAΓ(e)
∏
l∈L

ContAΓ(l) ,

where the vertex, edge and leg contributions with incident flag A-values
(a1, . . . , an) and (b1, b2) and (c) respectively are

ContAΓ(v) =
[
κ
(
z − z(

∞∑
k=0

Pp(v),00z
k)
)]∏n

i=1 ψ
ai−1
i

,

ContAΓ(v) =
[
aij

( ∞∑
k=0

Pp(v1),ikψ
k
1

)( ∞∑
k=0

Pp(v2),jkψ
k
2

)]∑b2−1
k=0 (−1)kψ

b1+k
1 ψ

b2−1−k
2

,

ContAΓ(l) =Pp(vl),αlcψ
c
l .

In the above expression, the subscript signifies a signed sum of the re-
spective coefficients. Fix an edge f ∈ E(Γ):

(i) if Γ is connected after deleting f , denote the resulting graph by

Γ0
f ∈ Gg−1,n+2 ,

(ii) if Γ is disconnected after deleting f , denote the resulting two
graphs by

Γ1
f ∈ Gg1,n1+1 and Γ2

f ∈ Gg2,n2+1

where g = g1 + g2 and n = n1 + n2.

Suppose f connect the T-fixed points pi, pj ∈ P2. Let the A-values of
the corresponding half-edges be (k, l). By Lemma 6 we have

∂ContAΓ(f)

∂X
=

(−1)k+l3

L
Rp(v1),1k−1Rp(v2),1l−1 .
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(i) If Γ is connected after deleting f , we have

1

|Aut(Γ)|
∑

A∈ZF
≥0

( L3

3C2
1

)∂ContAΓ(f)
∂X

∏
v∈V

ContAΓ(v)
∏

e∈E,e ̸=f

ContAΓ(e)

=
1

2
ContΓ0

f
(H,H) .

(ii) If Γ is disconnected after deleting f , we obtain

1

|Aut(Γ)|
∑

A∈ZF
≥0

( L3

3C2
1

)∂ContAΓ(f)
∂X

∏
v∈V

ContAΓ(v)
∏

e∈E,e̸=f

ContAΓ(e)

=
1

2
ContΓ1

f
(H)ContΓ2

f
(H)

The above two equations for all the edges of all the graphs Γ ∈ Gg,n
explain the first two terms on the right-hand side of the equation in
Theorem 2.

Similar argument for the leg l ∈ L(Γ) yields the last term in the
equation of Theorem 2 from the following observation

∂Pi,0k
∂X

=0 ,

∂Pi,1k
∂X

=− C2
0

L3
Pi,0 k−1 ,

which can be easily obtained by the first two equations in Lemma 6.
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