RATIONAL PERIOD FUNCTIONS FOR $\Gamma_{0}^{+}(3)$ WITH POLES ONLY AT 0

SoYoung Choi

Abstract. We characterize a rational period function $q(z)$ for $\Gamma_{0}^{+}(3)$ which has a pole only at 0 .

1. Introduction and statement of results

Let k be an integer and $p \in\{1,2,3\}$. For any meromorphic function f on the complex upper half plane \mathbb{H}, the usual slash operator is defined by

$$
\left(\left.f\right|_{k} \gamma\right)(z):=(c z+d)^{-k} f(\gamma z) \quad \gamma=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

Let $\Gamma_{0}^{+}(p)$ be the group generated by the congruence group $\Gamma_{0}(p)$ and the Fricke involution $W_{p}:=\left(\begin{array}{cc}0 & -1 / \sqrt{p} \\ \sqrt{p} & 0\end{array}\right)$. Let $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $U:=T W_{p}$.

A rational period function $q(z)$ of weight $2 k$ for $\Gamma_{0}^{+}(p)$ is a rational function satisfying

$$
\begin{equation*}
\left.q\right|_{2 k} W_{p}+q=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.q\right|_{2 k} U^{n_{p}-1}+\left.q\right|_{2 k} U^{n_{p}-2}+\cdots+\left.q\right|_{2 k} U+q=0 \tag{1.2}
\end{equation*}
$$

where $n_{p}= \begin{cases}3, & \text { if } p=1 \\ 2 p & \text { if } p=2,3 .\end{cases}$
The notion of rational period functions was initiated by Knopp through modular integrals (see [6, 7]). Knopp [7] investigated the location of poles of any rational period functions $q(z)$ for $\Gamma_{0}^{+}(1)=S L_{2}(\mathbb{Z})$ and proved that when $q(z)$ has a pole, $q(z)$ has poles only at 0 or at real quadratic irrationalities. For $p=2,3$, the author and Kim [2] proved that when $q(z)$ has a pole, $q(z)$ has poles only at 0 or at real quadratic

[^0]irrationalities. We refer the reader to $[3,4,5,6,7,9]$ and $[2,8]$ for the results related to rational period functions for $\Gamma_{0}^{+}(1)$ and $\Gamma_{0}^{+}(p)(p=2,3)$, respectively.

Knopp [7] found the exact forms of rational period functions for $\Gamma_{0}^{+}(1)$ with poles only at 0 . Extending the result of Knopp, Oh [8] found the exact forms of rational period functions for $\Gamma_{0}^{+}(2)$ with poles only at 0 . In the same paper, Oh also remarked the exact forms of rational period functions for $\Gamma_{0}^{+}(3)$ with poles only at 0 without proof. In this paper, modifying the proof of Theorem 1.2 in [8] we prove that Oh's assertion is true.

Theorem 1.1. Let $q(z)$ be any rational period function of weight $2 k$ for $\Gamma_{0}^{+}(3)$. If $q(z)$ has poles only at 0 , then

$$
q(z)= \begin{cases}c_{1}\left(1-(\sqrt{3} z)^{-2 k}\right), & \text { if } k>1 \tag{1.3}\\ c_{1}\left(1-(\sqrt{3} z)^{-2}\right)+c_{2} z^{-1}, & \text { if } k=1 \\ c_{1}\left(3^{k-1} z^{-1}+z^{-2 k+1}\right)+p_{k}(z), & \text { if } k \leq 0,\end{cases}
$$

where c_{1}, c_{2} are complex numbers and p_{k} is a polynomial in z of degree at most $-2 k$.

This paper is organized as follows. In Section 2, we prove Theorem 1.1.

2. Proof of Theorem 1.1

Proof of Theorem 1.1:

Case 1: $k>0$.
We first consider
(2.1) $q(z)=a_{l} z^{-l}+\cdots+a_{1} z^{-1}+b_{0}+b_{1} z+\cdots+b_{m} z^{m}\left(a_{l} \neq 0, b_{m} \neq 0\right)$,
with $l \geq 1, m \geq 0$. Applying (1.1) to $q(z)$, we have

$$
\begin{align*}
-q(z) & =(\sqrt{3} z)^{-2 k} q\left(\frac{-1}{3 z}\right) \\
& =(-1)^{l} a_{l} 3^{l-k} z^{l-2 k}+\cdots+(-1) a_{1} 3^{1-k} z^{1-2 k} \\
& +b_{0} 3^{-k} z^{-2 k}+b_{1}(-1) 3^{-1-k} z^{-1-2 k}+\cdots \\
& +b_{m}(-1)^{m} 3^{-m-k} z^{-m-2 k}
\end{align*}
$$

Comparing the lowest term in (2.2), we have $l=m+2 k$. Note that $U=\left(\begin{array}{c}\sqrt{3} \\ \sqrt{3} \\ -1 / \sqrt{3} \\ 0\end{array}\right), U^{2}=\left(\begin{array}{cc}2 & -1 \\ 3 & -1\end{array}\right), U^{3}=\left(\begin{array}{cc}\sqrt{3} & -2 / \sqrt{3} \\ 2 \sqrt{3} & -\sqrt{3}\end{array}\right) U^{4}=\left(\begin{array}{ll}1 & -1 \\ 3 & -2\end{array}\right), U^{5}=$
$\left(\begin{array}{cc}0 & -1 / \sqrt{3} \\ \sqrt{3} & -\sqrt{3}\end{array}\right)$ and $U^{5} T=W_{3}$. From (1.2), we have

$$
\begin{aligned}
0 & =\left.\left(\left.q\right|_{2 k} U^{5}+\left.q\right|_{2 k} U^{4}+\cdots+\left.q\right|_{2 k} U+q\right)\right|_{2 k} T \\
& =\left.q\right|_{2 k} W_{3}+(3 z+1)^{-2 k} q\left(\frac{z}{3 z+1}\right)+(2 \sqrt{3} z+\sqrt{3})^{-2 k} q\left(\frac{\sqrt{3} z+\frac{1}{\sqrt{3}}}{2 \sqrt{3} z+\sqrt{3}}\right) \\
& +(3 z+2)^{-2 k} q\left(\frac{2 z+1}{3 z+2}\right)+(\sqrt{3} z+\sqrt{3})^{-2 k} q\left(\frac{\sqrt{3} z+\frac{2}{\sqrt{3}}}{\sqrt{3} z+\sqrt{3}}\right)+q(z+1)
\end{aligned}
$$

which gives from (1.1)

$$
\begin{align*}
q(z) & =(3 z+1)^{-2 k} q\left(\frac{z}{3 z+1}\right)+(2 \sqrt{3} z+\sqrt{3})^{-2 k} q\left(\frac{\sqrt{3} z+\frac{1}{\sqrt{3}}}{2 \sqrt{3} z+\sqrt{3}}\right) \\
& +(3 z+2)^{-2 k} q\left(\frac{2 z+1}{3 z+2}\right)+(\sqrt{3} z+\sqrt{3})^{-2 k} q\left(\frac{\sqrt{3} z+\frac{2}{\sqrt{3}}}{\sqrt{3} z+\sqrt{3}}\right) \\
& +q(z+1) \\
& =\sum_{j=0}^{l-1} \frac{a_{l-j}(3 z+1)^{l-2 k-j}}{z^{l-j}}+\sum_{i=0}^{m} \frac{b_{i} z^{i}}{(3 z+1)^{2 k+i}} \\
& +\sum_{j=0}^{l-1} \frac{a_{l-j} 3^{-k}(2 z+1)^{l-2 k-j}}{(z+1 / 3)^{l-j}}+\sum_{i=0}^{m} \frac{b_{i} 3^{-k}(z+1 / 3)^{i}}{(2 z+1)^{2 k+i}} \\
& +\sum_{j=0}^{l-1} \frac{a_{l-j}(3 z+2)^{l-2 k-j}}{(2 z+1)^{l-j}}+\sum_{i=0}^{m} \frac{b_{i}(2 z+1)^{i}}{(3 z+2)^{2 k+i}} \\
& +\sum_{j=0}^{l-1} \frac{a_{l-j} 3^{-k}(z+1)^{l-2 k-j}}{(z+2 / 3)^{l-j}}+\sum_{i=0}^{m} \frac{b_{i} 3^{-k}(z+2 / 3)^{i}}{(z+1)^{2 k+i}} \\
& +\sum_{j=0}^{l-1} a_{l-j}(z+1)^{j-l}+\sum_{i=0}^{m} b_{i}(z+1)^{i} . \tag{2.3}
\end{align*}
$$

Since $l-2 k=m$ and $l>m$, comparing the principal part at ∞ in (2.1) and (2.3), we get

$$
b_{0}+b_{1} z+\cdots+b_{m} z^{m}=b_{0}+b_{1}(z+1)+\cdots+b_{m}(z+1)^{m}
$$

which gives $m=0$, hence

$$
\begin{equation*}
l=2 k \text { and } q(z)=a_{l} z^{-l}+\cdots+a_{1} z^{-1}+b_{0} . \tag{2.4}
\end{equation*}
$$

By applying (1.1) to (2.4) and comparing the coefficients, we have (2.5)
$b_{0}=-\sqrt{3}^{l} a_{l}, \quad a_{l-j}(-1)^{l-j} \sqrt{3}^{l-2 j}=-a_{j} \quad$ for $1 \leq j \leq l-1=2 k-1$.
In particular, $a_{k}=(-1)^{k+1} a_{k}$, so $a_{k}=0$ if k is even.
Applying (1.2) to (2.4) leads to

$$
\begin{aligned}
& \sum_{j=0}^{2 k-1} \frac{a_{2 k-j}(-\sqrt{3})^{2 k-j}}{(\sqrt{3} z-\sqrt{3})^{j}}+b_{0}(\sqrt{3} z-\sqrt{3})^{-2 k} \\
+ & \sum_{j=0}^{2 k-1} \frac{a_{2 k-j}}{(3 z-2)^{j}(z-1)^{2 k-j}}+b_{0}(3 z-2)^{-2 k} \\
+ & \sum_{j=0}^{2 k-1} \frac{a_{2 k-j}}{(2 \sqrt{3} z-\sqrt{3})^{j}(\sqrt{3} z-2 / \sqrt{3})^{2 k-j}}+b_{0}(2 \sqrt{3} z-\sqrt{3})^{-2 k} \\
+ & \sum_{j=0}^{2 k-1} \frac{a_{2 k-j}}{(3 z-1)^{j}(2 z-1)^{2 k-j}}+b_{0}(3 z-1)^{-2 k} \\
& +\sum_{j=0}^{2 k-1} \frac{a_{2 k-j}}{(\sqrt{3} z)^{j}(\sqrt{3} z-1 / \sqrt{3})^{2 k-j}}+b_{0}(\sqrt{3} z)^{-2 k} \\
(2.6)+ & \sum_{j=0}^{2 k-1} a_{2 k-j} z^{j-2 k}+b_{0}=0 .
\end{aligned}
$$

If $k=1$, then $q(z)=a_{2} z^{-2}+a_{1} z^{-1}+b_{0}$. It follows from (2.5) that $b_{0}=-\sqrt{3}^{2} a_{2}$. Hence

$$
q(z)=b_{0}\left(1-(\sqrt{3} z)^{-2}\right)+a_{1} z^{-1}
$$

Suppose that $k \geq 2$.
Note that from the partial fraction expansion, we have
$\frac{1}{z^{N}\left(z-\frac{1}{3}\right)^{M}}=\frac{A_{1}}{z}+\frac{A_{2}}{z^{2}}+\cdots+\frac{A_{N}}{z^{N}}+\frac{B_{1}}{z-\frac{1}{3}}+\frac{B_{2}}{\left(z-\frac{1}{3}\right)^{2}}+\cdots+\frac{B_{M}}{\left(z-\frac{1}{3}\right)^{M}}$,
where $A_{N-j}=3^{M+j}(-1)^{M}\binom{M+j-1}{M-1}(0 \leq j \leq N-1)$ and $B_{M-j}=$ $3^{N+j}(-1)^{j}\binom{N+j-1}{N-1}(0 \leq j \leq M-1)$.

By applying the partial fraction expansion to $\frac{a_{1}}{(\sqrt{3} z)^{2 k-1}(\sqrt{3} z-1 / \sqrt{3})}$ and $\frac{a_{2}}{(\sqrt{3} z)^{2 k-2}(\sqrt{3} z-1 / \sqrt{3})^{2}}$ on the left hand side of (2.6), we obtain that the
coefficient of $z^{-2 k+2}$ is $-3^{2-k} a_{1}+3^{-k+2} a_{2}+a_{2 k-2}$ so that

$$
\begin{equation*}
a_{2 k-2}+3^{2-k} a_{2}-3^{2-k} a_{1}=0 \tag{2.7}
\end{equation*}
$$

By (2.5), we have $a_{2 k-2}+3^{-k+2} a_{2}=0$ and so $a_{1}=0$.
If $k=2$, then $a_{2}=0, a_{3}=0$ and $b_{0}=-\sqrt{3}^{4} a_{4}$ by (2.5) and (2.7). Therefore

$$
q(z)=b_{0}\left(1-(\sqrt{3} z)^{-4}\right)
$$

Suppose that $k \geq 3$.
We now assume $a_{1}=a_{2}=\cdots=a_{i-1}=0$ for $2 \leq i \leq k-1$. By applying the partial fraction expansion on the left hand side of (2.6), we obtain that the coefficient of $z^{-2 k+i+1}$ is $3^{-k+i+1}(-1)^{i+1} a_{i+1}+$ $i 3^{-k+i+1}(-1)^{i} a_{i}+a_{2 k-i-1}$ so that

$$
0=a_{2 k-i-1}+(-1)^{i+1} 3^{-k+i+1} a_{i+1}+i(-1)^{i} 3^{-k+i+1} a_{i}
$$

By (2.5), $a_{2 k-i-1}+a_{i+1}(-1)^{i+1} 3^{-k+i+1}=0$, which gives $a_{i}=0$. Consequently, we have $a_{1}=a_{2}=\cdots=a_{k-1}=0$. Note that $a_{k}=0$ if k is even.

Therefore, for $k \geq 3, q(z)$ has the form

$$
q(z)= \begin{cases}b_{0}\left(1-(\sqrt{3} z)^{-2 k}\right), & \text { if } k \text { is even } \\ b_{0}\left(1-(\sqrt{3} z)^{-2 k}\right)+a_{k} z^{-k}, & \text { if } k \text { is odd }\end{cases}
$$

Since $b_{0}\left(1-(\sqrt{3} z)^{-2 k}\right)$ satisfies (1.1) and (1.2), $q(z)=b_{0}\left(1-(\sqrt{3} z)^{-2 k}\right)+$ $a_{k} z^{-k}$ satisfies (1.1) and (1.2) if and only if $a_{k} z^{-k}$ satisfies (1.1) and (1.2). Note that z^{-k} satisfies (1.1) only when k is odd. We now show that for odd k, z^{-k} satisfies (1.1) and (1.2) if and only if $k=1$. For $q(z)=z^{-k}$, the functional equation (1.2) says

$$
\begin{align*}
& \frac{-1}{(z-1)^{k}}+\frac{1}{(3 z-2)^{k}(z-1)^{k}}+\frac{1}{(2 z-1)^{k}(3 z-2)^{k}} \\
& +\frac{1}{(3 z-1)^{k}(2 z-1)^{k}}+\frac{1}{z^{k}(3 z-1)^{k}}+\frac{1}{z^{k}}=0 \tag{2.8}
\end{align*}
$$

and this is 0 only when $k=1$. Indeed, we have

$$
\frac{1}{(3 z-2)^{k}(z-1)^{k}}=\sum_{j=1}^{k} \frac{A_{j}}{(z-1)^{j}}+\sum_{j=1}^{k} \frac{B_{j}}{(3 z-2)^{j}} \quad \text { with } A_{j} B_{j} \neq 0
$$

which gives that (2.8) is satisfied only when $k=1$.
We now consider

$$
q(z)=a_{l} z^{-l}+\cdots+a_{1} z^{-1}
$$

Note $q_{1}(z):=q(z)+1-(\sqrt{3} z)^{-2 k}$ is a rational period function with poles only at 0 . By the same proof in the above, $q_{1}(z)$ have the form

$$
q_{1}(z)= \begin{cases}1-(\sqrt{3} z)^{-2 k}, & \text { if } k>1 \\ 1-(\sqrt{3} z)^{-2}+a_{1} z^{-1}, & \text { if } k=1\end{cases}
$$

which says

$$
q(z)= \begin{cases}0, & \text { if } k>1 \\ a_{1} z^{-1}, & \text { if } k=1\end{cases}
$$

Case 2: $k \leq 0$.
Let D be the differential operator defined by $D f(z)=\frac{1}{2 \pi i} \frac{d f}{d z}$. By applying Bol's identity [1] to (1.1) and (1.2), we have

$$
\begin{aligned}
0 & =D^{-2 k+1}\left(\left.q\right|_{2 k} W_{3}(z)+q(z)\right)=\left.\left(D^{-2 k+1} q\right)\right|_{2-2 k} W_{3}(z)+D^{-2 k+1} q(z) \\
0 & =D^{-2 k+1}\left(\left.q\right|_{2 k} U^{5}(z)+\left.q\right|_{2 k} U^{4}(z)+\cdots+\left.q\right|_{2 k} U(z)+q(z)\right) \\
& =\left.\left(D^{-2 k+1} q\right)\right|_{2-2 k} U^{5}(z)+\left.\left(D^{-2 k+1} q\right)\right|_{2-2 k} U^{4}(z)+\cdots \\
& +\left.\left(D^{-2 k+1} q\right)\right|_{2-2 k} U(z)+D^{-2 k+1} q(z)
\end{aligned}
$$

which mean that $q^{(-2 k+1)}(z)$ is a rational period function of positive weight $2-2 k$. Note that the term $b_{1} z^{-1}$ does not occur as the derivative of a rational function. Hence it follows from Case 1 of the proof that we have $q^{(-2 k+1)}(z)=b_{0}\left(1-(\sqrt{3} z)^{2 k-2}\right)$. Integrating $-2 k+1$ times, we get

$$
q(z)=c\left(3^{k-1} z^{-1}+z^{-2 k+1}\right)+p_{k}(z)
$$

where c is a complex number and $p_{k}(z)$ is a polynomial of degree $\leq-2 k$.

References

[1] G. Bol, Invarianten linearer differentialgleichungen, Abh. Math. Sem. Univ. Hamburg., 16 (1949), nos. 3-4, 1-28.
[2] S. Choi and C. H. Kim, Rational period functions in higher level cases, J. Number Theory 157 (2015), 64-78.
[3] Y. Choie and L. A. Parson, Rational period functions and indefinite quadratic forms I, Math. Ann., 286 (1990), no. 4, 697-707.
[4] Y. Choie and L. A. Parson, Rational period functions and indefinite quadratic forms II, Illinois J. Math., 35 (1991), no. 3, 374-400.
[5] Y. Choie and D. Zagier, Rational period functions for $\operatorname{PSL}(2, \mathbb{Z})$, Contemp. Math., 143 (1993), 89-108.
[6] M. Knopp, Rational period functions of the modular group, Duke Math. J., 45 (1978), no. 1, 47-62.
[7] M. Knopp, Rational period functions of the modular group II, Glasgow Math. J., 22 (1981), no. 2, 185-197.
[8] D. Y. Oh, Rational period functions for $\Gamma_{0}^{+}(2)$ with poles only in $\mathbb{Q} \cup\{\infty\}$, Proc. Japan Acad. Ser. A Math. Sci., 99 (2023), no. 1, 7-12.
[9] L. A. Parson, Rational period functions and indefinite binary quadratic forms, III, Contemp. Math., 143 (1993), 109-116.

SoYoung Choi
Department of Mathematics Education and RINS
Gyeongsang National University
501 Jinjudae-ro
Jinju 52828, Republic of Korea
E-mail: mathsoyoung@gnu.ac.kr

[^0]: Received October 06, 2023; Accepted November 13, 2023.
 2020 Mathematics Subject Classification: Primary 11F03; Secondary 11F11.
 Key words and phrases: Rational period function.

