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DISCRETE VOLUME OF THE POSET POLYTOPE FOR
A VARIANT OF UP-DOWN POSETS

BYEONG-GIL CHOE*, HYEONG-KwWAN JU** AND KyU-CHUL
SHIM***

ABSTRACT. Discrete volumes of poset polytopes for a variant of
up-down posets introduced in [4] were studied. We obtained the
generating functions for the discrete volumes of poset polytopes for
a variant of up-down poset using the characteristic matrices.

1. Introduction

Let r be a positive integer. [r] := {1,2,--- ,7}. For a given bipartite
simple graph G = (V, E') with V' = [r], the graph polytope P(G) is defined
as follows:

P(G) = {(x1,22, -+ ,z,) € [0,1]" | ij € E implies z; + z; < 1}.
A characteristic function K : [0,1]2> — R (resp. J : [0, 1]> — R) is defined
by the following:

1, ifs+¢t<I1(resp. s+t>1
K(s,t)(resp. J(s,t)) := s (resp. s )

0, elsewhere.
Now, if we let ¢(z1, 22, -+, 2) := [[;;ep K (i, x;), then it can be seen
that P(G) = ¢~ 1(1). Discrete volume of the polytope P of dimension n

is defined as
Lp(m) :=#(mPNZ").
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We call this an Ehrhart function. The FEhrhart series is an ordinary
generating function for the sequence (Lp(m))n,>0 as follows:
Ehrp(z) = Z Lp(m)z".
m>0

See [1] for Ehrhart functions and Ehrhart series. Next, we let the char-
acteristic matrix U(m) of the first kind be a matrix of size m x m with
1 over the anti-diagonal entries or above, and 0 elsewhere. Likewise, we
let the characteristic matrix D(m) of the second kind be a matrix of size
m x m with 1 over the anti-diagonal entries or below, and 0 elsewhere.
For example,

1111 0 001
1110 0 011
U4) = and D(4) =
1 100 01 11
1 0 0 0 1111
Their corresponding inverse matrices are as follows:
0 0 0 1 0 0 -1 1
0 0 1 -1 0 -1 1 0
U4)™t = and D(4) "' =
0 1 -1 0 -1 1 0 0
1 -1 0 0 10 0 0

Discrete volumes of graph polytopes are related to the characteristic

matrices.

DEFINITION 1.1. For a given square matrix M, we denote s(M) by
the sum of all entries of the matrix M. Let u be the column vector all
of whose entries are 1. Note that s(M) = u’ Mu.

THEOREM 1.2. Let L,, be the path with n(> 1) vertices. That is,
L, = ([n], E), where E = {i(i+1)|i =1,2,...,n—1}. Then the discrete
volume of graph polytope P(L,,) is

Lp(r,y(m) = s((U(m +1))").

Proof.

Lp(r,,)(m) = #(mP(Ly)NZ") = #(m¢~ (1)NZ") = #(¢—1(1)mizn).

m
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Let U(m + 1) == (Ui]’(m))ogid'gm, where
L,iti+53<m
uij(m) =

0, otherwise

Note that u;j(m) = K (- L,

(U(m+1))" 1)y = > Wiy (M) Wigiy (M) - -+ i,y (M)
0<i2,i3, " in—1<m
(D) i 13 in—-1 J
g K [ — K _ ) ... K i
> (DK (2, 2) K (28 )

0<i2,i3, Jin—1<m

i i 13 in—-1 J
= Z ¢(77777a"' ai)
m m m m m

0<ig,i3, in—1<m

s(Um+1))") = Y (Um+1)" ")y =#6"'(1)N 7).

— m
0<z,5<m

O]

We introduce poset polytopes, and then derive Ehrhart series and gen-
erating functions for chain polytopes in Section 1. In Section 2, we
obtain the discrete volume of the poset polytopes for a new poset where
the chain and the up-down poset are connected. We also compute
and obtain the generating function on the poset polytopes for this new
poset. The generating functions are represented in terms of P, (x) =
det(I+xU(m)), which we are familiar with and had certain relationship
with Chebyshev polynomials. (Refer [3] for the analysis of P, (x)(=
Qm-1(—x))’s.) In the final Section we raise some issues for further con-

sideration in the future.

2. Poset Polytopes

Let S = ([n], <) be a graded poset. Poset polytope of the poset S is
defined as following:

P(S) ={(z1,22,--- ,2n) € [0,1]"i < j = x; <z; Vi,je€n]}



198 B.-G. Choe, H.-K. Ju, and K.-C. Shim

One of the obvious posets is chains(totally ordered sets) which are given
by

Cp={[n]l1 <2<---<n}.
Therefore, the poset polytope P(C,,) corresponding to the poset Cy, is:
(CP) P(Cp) ={(z1,22, -+ ,2p) € [0,1]"|0 <z <29 < -+ -y, < 1}

Another kind of posets we are interested in is the up-down poset Z,

given by:

Zn={n]1<2>3<--->nifnisodd (<nifn is even)}.

Similar to the previous case, the corresponding poset polytope P(Z)
can be defined for this up-down poset. All poset polytopes, like graph
polytopes, are subset of n—dimensional unit hypercube. Note that ev-
ery simple bipartite graph can be regarded as a graded poset of rank 1.
Now, we compute the discrete volume of P(C,,). In order to compute
the discrete volume of poset polytope for the chain C,, of length n rep-
resented as in the equation (CP), we need to do the change of variables
to use the idea of graph polytope as below: We let
1—x;, if i is even,

Ti =
x;, otherwise

Then the successive inequalities turn into the following:
P(Cy) ={(r,m2, -+ ,m) €10,1]" | 0< 1 <1—1p<--- <7
ifnisodd (or,1—m,ifniseven) <1}.

Note that with this change of variables we have the following :

P(Cy) =~ (1), where ¥(y, 79, ,70) = K(1,72)J (12, 73) K (13, 74) - - - .

The Ehrhart function for this polytope is as follows.

THEOREM 2.1. Ehrhart function for the poset polytope P(C,) is
given as following:

Lp(Copia)(m) = #(mP(Copyr )NZ*HY) = s[(U(m+1)D(m+1))¥] = (% +ri7,+ m)7
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Lp(cyy) (m) = #(mP(Cox)NZ*) = s[(U(m+1)D(m+1))" U (m+1)] = <2k; m>
That is,
Lp(c,)(m) = #(mP(Cp) NZ") = (" + m> ,

m
and
1
EhTP(Cn)(Z) = (1 — Z)n+1

Proof. We prove the case n = 2k. The other case can be proved

similarly.
11 0 0 01
10 00 1 1
1 1 0 0 :
Um+1)Dm+1)=1 . . :
Do 0 0
1 1 00 0 1
1 0 0 0 1 1 1 1
1 2 m m—+1
0 1 m—1 m
oo o 2 3
00 --- 1 2
00 --- 0 1

=T4+2N +3N?* 4.+ (m+1)N™" = (I - N)™2,

where the nilpotent matrix N = (ai;), a;i+1 = 1, and 0 elsewhere. Using
the same method as in the proof of Theorem 1, it can be shown that the

following formula holds.
Lp(Cyy (m) = #(mP(Co) NZ*F) = s[(U(m + 1) D(m + 1) 71U (m + 1)]
=s((I = N) 2k Dy (m +1)).
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(I_N)—Q(k:—l) — Z <

0<i<m

—2k+2
1

e 5
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0<i<m

2k -3+

7

)

2k—3\  (2k—2 2k+m—4\  (2k+m—3
Co) (2k£3) (2k¢r}£5) 2k-m—4
o (%97) ) I
oY iy b
o G L
0 0 0 ( 0 )
(I —N)2EDy(m +1)
2k—3\  (2k—2 2k+m—4\  (2k+m—3 11 1 11
(8) E%l:% E%ﬁfn% EZk+Tn4) 111 10
0 m—2 m—1
- 0 0 G G 111 00
0 0 G G 110 00
0 0 0 (253) 100 00
EY ey e e
r) R (o) 0
I G R 00
(le—l) (2k0—2) 0 0
(*2) 0 0 0
From the previous expression we obtain the following;:
_ TN 2k — 14 2k +
L (m) = s{UGm DD (] = 3 (7)< (),
i=0
Thus, the Ehrhart series of the poset polytope P(C),) is
m 1
Eh?ﬂp(cn)(Z) = Z LP(C,L)(m)Z = m

m2>0
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EXAMPLE 2.2. Ehrhart series of P(Cy) is as follows:

m 44+m\ ,, 1
Ehrpc,)(2) = Z Lpc,)(m)z" = Z < )Z -

m (1—2)°
m>0 m>0

= 14+524+1522+3522 + 7024 + - -+ .

3. Main Results

We consider the discrete volume of poset polytope for up-down poset.
Let b(k,m) := s(U(m+1)*=1). (See [2](A050446) or [5] for more details
on this bivariate sequence.) For convenience, b(0,m) is defined as 0.

We need a notation about the continued fraction. For a given infinite
sequence (an)n>0 we define

Hn(a()a a, - 7an) =

and

LEMMA 3.1. Let A = (ai;) be an invertible matrix of size n. Then

s(adj(A)) = det ( 2 _A“t ) ,

where u is an n—vector all of its entries 1.
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Proof. Let «; be the i—th column vector of the adjugate adj(A) of

the matrix A and |o;| the column sum of the vector ;.

s(A) = adJ u = Z ||

Note that
‘Oéi| - det(/Bl)BQa'” )/Bi—lauw@i-‘rlv'” aﬁn)

where [3; is the i—th column vector of the matrix A. The cofactor ex-

)

with respect to the first row gives us the value > | |al. O

pansion of the given matrix

The following theorem comes from the reference [3] and is related to the
poset polytope for the up-down poset. We provide its proof for a clear

understanding of what follows.

THEOREM 3.2. For fixed m, the generating function associated with
the discrete volume sequence Lpr,y(m)(k = 0,1,2,---) of poset poly-
tope P(Ly) of up-down poset is an F,(x). That is,

3 S Pon(2)
D=1 3 Lo (e =14 3 a0 1)y = Felt)
where the last expression S:‘L((z)) is the reduced rational function so that

Qm(z) = det(I — 2U(m + 1)) and Pp,(z) = Qm-1(—x).
Proof.

w(T) = Z Lpry(m)z
s(adj(I — zU(m + 1)))

(kZOxUm“ ) = (U —aUm+ 1)) = dot(I —2U(m +1))

s(U(m + 1)F)2*

tnqg

e
Il

0

where adj(I — zU(m + 1)) is an adjugate of the matrix I — zU(m + 1).
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By the previous lemma, the following holds:

t

. 0 —u
s(adj(f —zU(m +1))) = det ( w T—2U(m+1) ) .

In order to get the formula for F,,,(z) = 1+ F; (z) we need the following:

0 —ut
det det({ — zU 1
xde (u I—:L‘U(m+1))+ et(I —zU(m + 1))

0 —ut 1 —ul
= det + det
zu I —2U(m+1) 0 I—zU(m+1)

1 —ut
= det
zu I —2U(m+1)

1 -1 -1 - -1 -1
0 1 o --- 0 0
0 0 1 - 0 T
=det] O O o --- T T
o o o0 - 14z T
0 0 T e 0 14z

=det({ +xD(m — 1)) =det(I +2zU(m — 1)) = Qm—-1(—x) = Py(x).
So we get the desired result:

() = 1 + 2 (x) =

EXAMPLE 3.3. F,,(z) satisfies the first-order nonlinear recurrence

relation:
1

———  with Fy(x) = 1.
—x 4 Fip(—x) with Fo(x)

Frqi(z) =
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We list first several continued fractions Fy,(x).

Folo) = = 528
File) = e 511((?)
Falw) = 1 7124; - ;;i P CI;Z((?)
Fy(z) = 1 —12;; ix:a;;i ;;i P gi((i))

The following result is useful to prove the main results.

THEOREM 3.4. We let a; (0 < ¢ < m) be the i-th column vector
of the adjoint matrix adj(l,+1 — xzU(m + 1)), and |oy| its column sum.
Then the following holds:

(3.1) loy| = Fin-2i() = LEJ
2

P2i—1—m(_x) 7> L J

where Py(z) = 1 and Py, (x) = det(I,+xzU(m)) = Qm—1(—2) form > 1.

Proof. We use the mathematical induction on m. For the case m = 1:

adj(be(Q))z(l ! )

r 11—z

‘Oé()’ =1 +x = Pl(a:),

‘061’ =1= Po(—:B).
This says that the formula (3.1) works for the case m = 1. Now, we
assume that the next formula holds for the case k < m.
Pp_2i(x) i< %]

3.2 ;| =
(3.2) il Ppan(ea) ik
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We show that the formula (3.2) holds for the case K = m. |a;|, which is the i-
th column sum of adj(Ip,+1 — xU(m + 1)), is as following:

l—-2z —x 1 —r -
—-r 11—z 1 —z 0
—r B )| 0

|| = det —x —x 1 0 0
—r B DT | 0
—x 0 e 1 e 0

(m+1)x(m+1)
Note that the (m+ 1)—column vector u is positioned at the i-th column.
Add an x times i-th column to all remaining columns leads to the fol-
lowing:

1 0 1 0 0
0 1 1 0 T
0 0 1 x T
det| O O 1 T T
0 0 1 1+x x
0 = 1 T T ke
1 0 1 0 T
0 1 1 T x
0 0 1 T x
= det| O O 1 x T
0 =z 1 1+zx x
r x -+ 1 .- x 1+=z

mxXm
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Now, u is m-column vector positioned at the (i — 1)th column. Add
(—z)u to all the remaining columns. Then we obtain the next:

1l—-2z —x 1 —x 0

-2 1—2 -+ 1 -+ 0 0

- —x 1 0 0

= det —x —x 1 0 O
—x 0 cee 1 -« 100

0 0 R R R |

mXxm

By cofactor expansion along the last column, we get the following:

l—x —=z 1 —-r —z
—x 1=z -+ 1 -+ —2 0
—r —x e 1 -0 0

= det —x —x 1 0 0
—x —x 1 0
- 0 0

(m—1)x(m—1)
This determinant is a (¢ — 1)th column sum of adj(Z,—1 — 2U(m — 1)).
Therefore, by the induction assumption, from the formula (3.2) with
(k, i) replaced by (m — 2,i — 1) we get the following equations.

Pn—2)—2(i-1)(®) i—1< ™2
Pyict)—1—(m-2)(—z)  i—1> |22
The right hand side of the previous expression is exactly same as that
of the formula (3.1). This completes the proof. O

|| =
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ExampLE 3.5. Consider the example with the case m = 4.

(Jawol, |anl, ||, |es], [cual)

= v'adj(Is — 2U(5))

=(1+22 -3~ 4281+ —221,1 — 2,1 — 20 — 2% +27)
= (Pu(x), Po(), Po(x), Pr(—x), P3(—x))

O

A variant of the up-down poset is defined as follows. (See [4] and Figure
1 for details.)

Agp ={0s <051 < <0< <1 <Tp>13< 14> --<(or >},

where [n + s] = {oi};; U{7;};_;. In other words, the sub-poset o;s
forms a chain and the orders between /s in As,, change alternatively.
Our goal here is to find the discrete volume of poset polytope for variant
of updown posets.

FIGURE 1. A Variant of the up-down poset

We consider the discrete volume of poset polytope for Agyni1. (See
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Figure 1.) The Ehrhart function of the poset polytope for the poset
described as As, 41 is obtained as the sum of the all entries of the

matrix given by
(U(m+1)D(m+1)) U(m+1)" = (U(m+1)J)"U(m+1)",
so that

Lp

A2r,n+1

y(m) = #(mP Nz = s((U(m + 1)) U(m + 1)”),

where J = (b;j) be a (m + 1) x (m + 1) square matrix with b; ; = 1
(0<i,j <m) ifi+j=m,0 for other entries. Similarly, we have

Lp(ag i1 pin)(m) = #(mPNZ¥ ) =5 <D(m + 1)U (m + 1))’“+1U(m + 1)"1>
=5 ((JU(m + 1))2T+2U(m + 1)"_1>
—s <J(JU(m +1)7 U (m + 1)"1)

= s<(U(m + 1)) U(m + 1)">

Note here that J~' = J, D(m+1) = JU(m+1)J, and
(U(m+1)D(m+1) = (U(m+1)J)* = [+2N+3N?+- - +(m+1)N™ = (I-N) "2

The following formula is useful.

(3.3)
1-2)" z(1—-2)"' z(1-2)"2 .. 2(1-2)
0 1—-2)™ 2(1-2)"1 ... 2(1-2)
0 0 1—2)™ - 2(1-2)3
u'adj(I—2U(m+1)J) = u' 0 0 0 cz(l—x)
0 0 0 (1—z)m™
0 0 0 0

z(1—z)
(1 —x)?

(1 —z)?

z(1 —'x)mfl
(1 —a)™
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THEOREM 3.6. Let g,,(z,y) be the bi-variate generating function of
Lpa,.,)(m) for fixed m as following:

gm(:pay) = Z LP(AS,R)(m)‘,ESyna
s,n>0

and let fm(v,y) be the modified generating function for Lp(4, ,y(m).
That is,

Jm(z,y) = 14+ 2gm(2,0) + y9m(0,y) + 2ygm (v, y).

Then f,(z,y) satisfies the following:

fonl ) = _;)mﬂ - Fny) — 1+ 2ygn(a, 1),

(1
where F,,(y) is a generating function given in the form of a continued
fraction as in Theorem 3.2,

1 < m—i
gm(#:8) = (L —z)m L Ppga(—y) <Z§:% ol =) >,

and

Proof. (1) Case 1: Both of the Chain and the Up-down poset are
empty. For convenience we let

fm(0,0) = 1.

(2) Case 2: The Chain is empty, but the Up-down poset is not.

Pm(_y)

Fn(0,9) = 14+ygm (0, y) = 1+ys[(I—yU(m+1)) 7] = Pria(y)

(3) Case 3: The Up-down poset is empty, but the Chain is not.
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fn(2,0) = 1 4 2g,(z,0)
=1+ as[( —2U(m+1)J)™Y
=1+ ﬁ Z(l - x)j
7=0

o
1=zt

(4) Case 4: Neither of the Chain nor the Up-down poset is empty.
gm(@,y) = > Lpa, ) (m)z"y"
s,n>0
= s((I+aU(m+1)J + @U(m+1)J)? + ) +yUm + 1)+ (yU(m+ 1)) +---))
=u'(I —2xU(m+ 1)) ' I —yU(m + 1)) u

_ ut<(1i)m+1adj(l—a:U(m+ 1)) adj(T — yU(m + 1)))u

1
Pt (*y)
1

= utad'I—:UUm+1J)<ad’I— Um+1 u)
5 —x)m+1~Pm+1(—y)< §(T = aU(m + 1)) ) (adi(T — yU(m + 1))
Let |v;] is i-th column sum of adj(f — (zU(m + 1)J), |wj| is j-th row

sum of adj(/ —yU(m + 1)). Then the last two factors in the previous

expression is changed to the following:

<utadj(l —zU(m + 1)J)> <adj(] —yU(m + 1))u) = E:; g ||ws.

By the Formula (3.3), |v;| = (1 — 2)™ %0 < i < m), and |w;] is the
formula given by Theorem 3.4.

gm(z,y) = Z s((U(m+1)J)’U(m+1)")z*y"

s,n>0

1 . m—1i
= T o™ Ponl( ) (Z i =) )

1=0
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P2 1< |2
vhere [ | P2 <13
m

2

Poi1-m(—y) i> 5] '

EXAaMPLE 3.7. In this example we consider the generating function
of the given poset polytope (magnified by a factor of 4, i.e., m = 4) for
the variant poset. Note that

Poya(y) = yPoy1(=y) + Pu(y)(n = 0,1,2,---)
with
Po(y) =1, P(y) =1+y.
So, we can find other P;(y)’s as follows:
Pyy) =1+y -y
Py(y) =1+2y —y* -y,
Py(y) = 1+2y —3y° —¢* + ¢
wo| = Pa(y) =1+2y —3y* =y’ +y
w1 = Poy) = 1+y -y
lwe| = Po(y) =1
lws| = Pi(—y) =1-y
wal = Ps(—y) =1 -2y —y* +¢°

4

This information gives us the generating function for fixed m = 4:

1 Py(y) _ Ty wrl(1 — YA
(b Reb Rl cpr s rm DI IS

4

fa(z,y) =

where the summation term in fq(x,y) is:

4 .
D lwil (1 —2)*
i=0

= Py(y) (1 — )" + Pa(y)(1 — 2)° + Po(y)(1 — 2)* + Pi(—y)(1 — z) + Ps(—y).
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4. Conclusion

In [4] a generating function on the sequence given by the continuous
volume of poset polytope for variant up-down poset according to the
length of both chain and up-down poset was found. Here we also ob-
tained the generating functions on the sequence given by the discrete
volume of the same poset(of course, according to the length of both
chain and up-down poset) using characteristic matrix. However, those
results obtained are for the fixed m. In other words, it remains to try
the generating functions on m with these results.
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