안티모니 셀레나이드 태양전지의 연구 개발 동향: 에너지 밴드 정렬 최적화

  • 신병하 (한국과학기술원 신소재공학과) ;
  • 지승환 (한국과학기술원 신소재공학과) ;
  • Published : 2023.10.31

Abstract

지구상에 풍부하며 저독성 소재인 안티모니 셀레나이드(Sb2Se3)는 재료가 갖는 우수한 광전자적 특성과 장기 내구성으로 차세대 태양전지 소자로 크게 주목 받고 있다. 또한, 비교적 짧은 연구기간 동안 빠른 성장 속도를 보여줬으며, 2014년 2.26%에서 8년의 연구기간 동안 약 5배인 2022년 10.57%를 달성하였다. 하지만, 여전히 기존의 칼코지나이드계 박막 태양전지인 CdTe(22.1%) 및 Cu(In,Ga)Se2(23.35%)가 달성한 효율에 비해 낮은 변환 효율을 보이고 있으며, 이는 계면에서 발생하는 캐리어 재결합으로 인한 개방전압 손실 문제가 주 원인으로 대두되고 있다. 따라서, Sb2Se3 광 흡수층에 인접한 전자 및 정공 수송층 사이에 적절한 밴드 정렬을 구축하여 캐리어 재결합 손실을 줄이는 것이 고효율 Sb2Se3 태양전지를 구현하기 위한 핵심 전략 중 하나이다. 본 원고에서는 Sb2Se3 광 흡수층의 기본적인 특성과 Sb2Se3 태양전지의 최근 연구 성과에 대해 간략하게 설명하고자 하며, 특히 전자 및 정공 수송층 적용을 통한 에너지 밴드 정렬 최적화에 관련된 내용을 중점적으로 소개하고자 한다. 또한, Sb2Se3 박막 태양전지 성능의 병목 현상을 극복하기 위한 잠재적인 연구 방향에 대해서도 논하고자 한다.

Keywords

References

  1. Yang, J.-H., et al., Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semiconductor Science and Technology, 2016. 31(8): p. 083002. 
  2. Nakamura, M., et al., Cd-free Cu (In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867.  https://doi.org/10.1109/JPHOTOV.2019.2937218
  3. Zeng, K., D.-J. Xue, and J. Tang, Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 2016. 31(6): p. 063001. 
  4. Lei, H., et al., Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar Rrl, 2019. 3(6): p. 1900026. 
  5. Mavlonov, A., et al., A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020. 201: p. 227-246.  https://doi.org/10.1016/j.solener.2020.03.009
  6. Zhou, Y., et al., Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014. 4(8): p. 1301846. 
  7. Zhao, Y., et al., Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells. Energy & Environmental Science, 2022. 15(12): p. 5118-5128.  https://doi.org/10.1039/D2EE02261C
  8. Shockley, W. and H. Queisser, Detailed balance limit of efficiency of pn junction solar cells detailed balance limit of efficiency of pn junction solar cells*.. J. Appl. Phys. Addit. Inf. J. Appl. Phys. J. Homepage, 1961. 32. 
  9. Chen, C. and J. Tang, Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Letters, 2020. 5(7): p. 2294-2304.  https://doi.org/10.1021/acsenergylett.0c00940
  10. Dong, J., et al., Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects. Nano Select, 2021. 2(10): p. 1818-1848.  https://doi.org/10.1002/nano.202000288
  11. Zhou, Y., et al., Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015. 9(6): p. 409-415.  https://doi.org/10.1038/nphoton.2015.78
  12. Tan, L., et al., Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol. Scientific Reports, 2017. 7(1): p. 3281. 
  13. Liu, X., et al., Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Progress in Photovoltaics: Research and Applications, 2017. 25(10): p. 861-870.  https://doi.org/10.1002/pip.2900
  14. Huang, M., et al., Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS applied materials & interfaces, 2019. 11(17): p. 15564-15572.  https://doi.org/10.1021/acsami.9b01220
  15. Savory, C.N. and D.O. Scanlon, The complex defect chemistry of antimony selenide. Journal of Materials Chemistry A, 2019. 7(17): p. 10739-10744.  https://doi.org/10.1039/C9TA02022E
  16. Chen, C., et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10: p. 18-30.  https://doi.org/10.1007/s12200-017-0702-z
  17. Lai, Y., et al., Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Applied surface science, 2012. 261: p. 510-514.  https://doi.org/10.1016/j.apsusc.2012.08.046
  18. Mehta, R.J., et al., High electrical conductivity antimony selenide nanocrystals and assemblies. Nano letters, 2010. 10(11): p. 4417-4422.  https://doi.org/10.1021/nl1020848
  19. Ma, J., et al., One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm, 2011. 13(7): p. 2369-2374.  https://doi.org/10.1039/c0ce00381f
  20. Costa, M.B., F.W. de Souza Lucas, and L.H. Mascaro, Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties. Journal of Solid State Electrochemistry, 2018. 22: p. 1557-1562.  https://doi.org/10.1007/s10008-017-3768-z
  21. Park, J., et al., Efficient solar-to-hydrogen conversion from neutral electrolytes using morphology-controlled Sb2Se3 light absorbers. ACS Energy Letters, 2019. 4(2): p. 517-526.  https://doi.org/10.1021/acsenergylett.8b02323
  22. Shiel, H., et al., Natural band alignments and band offsets of Sb2Se3 solar cells. ACS Applied Energy Materials, 2020. 3(12): p. 11617-11626.  https://doi.org/10.1021/acsaem.0c01477
  23. Li, G., et al., Improvement in Sb2Se3 solar cell efficiency through band alignment engineering at the buffer/absorber interface. ACS applied materials & interfaces, 2018. 11(1): p. 828-834.  https://doi.org/10.1021/acsami.8b17611
  24. Ou, C., et al., Bandgap tunable CdS: O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 2019. 194: p. 47-53.  https://doi.org/10.1016/j.solmat.2019.01.043
  25. Wen, X., et al., Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 2017. 172: p. 74-81.  https://doi.org/10.1016/j.solmat.2017.07.014
  26. Wang, L., et al., Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017. 2(4): p. 1-9.  https://doi.org/10.1038/nenergy.2017.46
  27. Phillips, L.J., et al., Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE Journal of Photovoltaics, 2018. 9(2): p. 544-551.  https://doi.org/10.1109/JPHOTOV.2018.2885836
  28. Wang, W., et al., Remarkable Cd-free Sb2Se3 solar cell yield achieved by interface band-alignment and growth orientation screening. Journal of Materials Chemistry A, 2021. 9(47): p. 26963-26975.  https://doi.org/10.1039/D1TA08404F
  29. Lu, S., et al., Sb2Se3 thin-film photovoltaics using aqueous solution sprayed SnO2 as the buffer layer. Advanced Electronic Materials, 2018. 4(1): p. 1700329. 
  30. Zhou, J., et al., Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells. Applied Surface Science, 2020. 534: p. 147632. 
  31. Wang, X., et al., Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells. Solar Energy Materials and Solar Cells, 2019. 189: p. 5-10.  https://doi.org/10.1016/j.solmat.2018.09.020
  32. Guo, H., et al., Significant increase in efficiency and limited toxicity of a solar cell based on Sb2Se3 with SnO2 as a buffer layer. Journal of Materials Chemistry C, 2019. 7(45): p. 14350-14356.  https://doi.org/10.1039/C9TC04169A
  33. Wang, X., et al., Enhancement of Sb2Se3 thin-film solar cell photoelectric properties by addition of interlayer CeO2. Solar Energy, 2019. 188: p. 218-223.  https://doi.org/10.1016/j.solener.2019.05.028
  34. Li, K., et al., Improved efficiency by insertion of Zn1-x MgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018. 167: p. 10-17.  https://doi.org/10.1016/j.solener.2018.03.081
  35. Wang, W., et al., Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium-Free Sb2Se3 Devices. Advanced Materials Interfaces, 2022. 9(13): p. 2102464. 
  36. Li, D.-B., et al., Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy, 2018. 49: p. 346-353.  https://doi.org/10.1016/j.nanoen.2018.04.044
  37. Phillips, L.J., et al. Close-spaced sublimation for Sb2Se3 solar cells. in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). 2017. IEEE. 
  38. Jeong, G., et al., Comprehensive rear surface passivation of superstrate Sb2Se3 solar cells via post-deposition selenium annealing treatments and the application of an electron blocking layer. Faraday Discussions, 2022. 239: p. 263-272.  https://doi.org/10.1039/D1FD00056J
  39. Chen, C., et al., 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Letters, 2017. 2(9): p. 2125-2132.  https://doi.org/10.1021/acsenergylett.7b00648
  40. Li, K., et al., 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer. Journal of Materials Chemistry A, 2019. 7(16): p. 9665-9672.  https://doi.org/10.1039/C9TA01773A
  41. Guo, L., et al., Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Solar Energy, 2021. 218: p. 525-531.  https://doi.org/10.1016/j.solener.2021.02.063
  42. Liu, C., et al., Back contact interfacial modification in highly-efficient all-inorganic planar nip Sb2Se3 solar cells. ACS applied materials & interfaces, 2020. 12(34): p. 38397-38405.  https://doi.org/10.1021/acsami.0c10629
  43. Shen, K., et al., Efficient and stable planar n-i-p Sb2Se3 solar cells enabled by oriented 1D trigonal selenium structures. Advanced science, 2020. 7(16): p. 2001013. 
  44. Amin, A., et al., Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells. Solar Energy, 2022. 231: p. 1-7.  https://doi.org/10.1016/j.solener.2021.11.009
  45. Lu, S., et al., In situ investigation of interfacial properties of Sb2Se3 heterojunctions. Applied Physics Letters, 2020. 116(24). 
  46. Lin, L.-y., et al., Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. Journal of Physics and Chemistry of Solids, 2018. 122: p. 19-24.  https://doi.org/10.1016/j.jpcs.2018.05.045
  47. Ahmadi, M., et al., Inverted polymer solar cells with sol-gel derived cesium-doped zinc oxide thin film as a buffer layer. Electronic Materials Letters, 2014. 10: p. 951-956.  https://doi.org/10.1007/s13391-014-3374-5
  48. Guijarro, N., et al., Toward antimony selenide sensitized solar cells: efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. The Journal of Physical Chemistry Letters, 2012. 3(10): p. 1351-1356.  https://doi.org/10.1021/jz3004365
  49. Ramavenkateswari, K. and P. Venkatachalam, Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electronic Materials Letters, 2016. 12: p. 628-637.  https://doi.org/10.1007/s13391-016-6076-3
  50. Kim, T., et al., Confined growth of high-quality single-crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications. Electronic Materials Letters, 2021. 17: p. 347-354.  https://doi.org/10.1007/s13391-021-00288-7
  51. Lu, S., et al., In situ investigation of interfacial properties of Sb2Se3 heterojunctions. Applied Physics Letters, 2020. 116(24).