References
- Yang, J.-H., et al., Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semiconductor Science and Technology, 2016. 31(8): p. 083002.
- Nakamura, M., et al., Cd-free Cu (In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867. https://doi.org/10.1109/JPHOTOV.2019.2937218
- Zeng, K., D.-J. Xue, and J. Tang, Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 2016. 31(6): p. 063001.
- Lei, H., et al., Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar Rrl, 2019. 3(6): p. 1900026.
- Mavlonov, A., et al., A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020. 201: p. 227-246. https://doi.org/10.1016/j.solener.2020.03.009
- Zhou, Y., et al., Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014. 4(8): p. 1301846.
- Zhao, Y., et al., Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells. Energy & Environmental Science, 2022. 15(12): p. 5118-5128. https://doi.org/10.1039/D2EE02261C
- Shockley, W. and H. Queisser, Detailed balance limit of efficiency of pn junction solar cells detailed balance limit of efficiency of pn junction solar cells*.. J. Appl. Phys. Addit. Inf. J. Appl. Phys. J. Homepage, 1961. 32.
- Chen, C. and J. Tang, Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Letters, 2020. 5(7): p. 2294-2304. https://doi.org/10.1021/acsenergylett.0c00940
- Dong, J., et al., Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects. Nano Select, 2021. 2(10): p. 1818-1848. https://doi.org/10.1002/nano.202000288
- Zhou, Y., et al., Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015. 9(6): p. 409-415. https://doi.org/10.1038/nphoton.2015.78
- Tan, L., et al., Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol. Scientific Reports, 2017. 7(1): p. 3281.
- Liu, X., et al., Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Progress in Photovoltaics: Research and Applications, 2017. 25(10): p. 861-870. https://doi.org/10.1002/pip.2900
- Huang, M., et al., Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS applied materials & interfaces, 2019. 11(17): p. 15564-15572. https://doi.org/10.1021/acsami.9b01220
- Savory, C.N. and D.O. Scanlon, The complex defect chemistry of antimony selenide. Journal of Materials Chemistry A, 2019. 7(17): p. 10739-10744. https://doi.org/10.1039/C9TA02022E
- Chen, C., et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10: p. 18-30. https://doi.org/10.1007/s12200-017-0702-z
- Lai, Y., et al., Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Applied surface science, 2012. 261: p. 510-514. https://doi.org/10.1016/j.apsusc.2012.08.046
- Mehta, R.J., et al., High electrical conductivity antimony selenide nanocrystals and assemblies. Nano letters, 2010. 10(11): p. 4417-4422. https://doi.org/10.1021/nl1020848
- Ma, J., et al., One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm, 2011. 13(7): p. 2369-2374. https://doi.org/10.1039/c0ce00381f
- Costa, M.B., F.W. de Souza Lucas, and L.H. Mascaro, Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties. Journal of Solid State Electrochemistry, 2018. 22: p. 1557-1562. https://doi.org/10.1007/s10008-017-3768-z
- Park, J., et al., Efficient solar-to-hydrogen conversion from neutral electrolytes using morphology-controlled Sb2Se3 light absorbers. ACS Energy Letters, 2019. 4(2): p. 517-526. https://doi.org/10.1021/acsenergylett.8b02323
- Shiel, H., et al., Natural band alignments and band offsets of Sb2Se3 solar cells. ACS Applied Energy Materials, 2020. 3(12): p. 11617-11626. https://doi.org/10.1021/acsaem.0c01477
- Li, G., et al., Improvement in Sb2Se3 solar cell efficiency through band alignment engineering at the buffer/absorber interface. ACS applied materials & interfaces, 2018. 11(1): p. 828-834. https://doi.org/10.1021/acsami.8b17611
- Ou, C., et al., Bandgap tunable CdS: O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 2019. 194: p. 47-53. https://doi.org/10.1016/j.solmat.2019.01.043
- Wen, X., et al., Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 2017. 172: p. 74-81. https://doi.org/10.1016/j.solmat.2017.07.014
- Wang, L., et al., Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017. 2(4): p. 1-9. https://doi.org/10.1038/nenergy.2017.46
- Phillips, L.J., et al., Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE Journal of Photovoltaics, 2018. 9(2): p. 544-551. https://doi.org/10.1109/JPHOTOV.2018.2885836
- Wang, W., et al., Remarkable Cd-free Sb2Se3 solar cell yield achieved by interface band-alignment and growth orientation screening. Journal of Materials Chemistry A, 2021. 9(47): p. 26963-26975. https://doi.org/10.1039/D1TA08404F
- Lu, S., et al., Sb2Se3 thin-film photovoltaics using aqueous solution sprayed SnO2 as the buffer layer. Advanced Electronic Materials, 2018. 4(1): p. 1700329.
- Zhou, J., et al., Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells. Applied Surface Science, 2020. 534: p. 147632.
- Wang, X., et al., Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells. Solar Energy Materials and Solar Cells, 2019. 189: p. 5-10. https://doi.org/10.1016/j.solmat.2018.09.020
- Guo, H., et al., Significant increase in efficiency and limited toxicity of a solar cell based on Sb2Se3 with SnO2 as a buffer layer. Journal of Materials Chemistry C, 2019. 7(45): p. 14350-14356. https://doi.org/10.1039/C9TC04169A
- Wang, X., et al., Enhancement of Sb2Se3 thin-film solar cell photoelectric properties by addition of interlayer CeO2. Solar Energy, 2019. 188: p. 218-223. https://doi.org/10.1016/j.solener.2019.05.028
- Li, K., et al., Improved efficiency by insertion of Zn1-x MgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018. 167: p. 10-17. https://doi.org/10.1016/j.solener.2018.03.081
- Wang, W., et al., Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium-Free Sb2Se3 Devices. Advanced Materials Interfaces, 2022. 9(13): p. 2102464.
- Li, D.-B., et al., Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy, 2018. 49: p. 346-353. https://doi.org/10.1016/j.nanoen.2018.04.044
- Phillips, L.J., et al. Close-spaced sublimation for Sb2Se3 solar cells. in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). 2017. IEEE.
- Jeong, G., et al., Comprehensive rear surface passivation of superstrate Sb2Se3 solar cells via post-deposition selenium annealing treatments and the application of an electron blocking layer. Faraday Discussions, 2022. 239: p. 263-272. https://doi.org/10.1039/D1FD00056J
- Chen, C., et al., 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Letters, 2017. 2(9): p. 2125-2132. https://doi.org/10.1021/acsenergylett.7b00648
- Li, K., et al., 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer. Journal of Materials Chemistry A, 2019. 7(16): p. 9665-9672. https://doi.org/10.1039/C9TA01773A
- Guo, L., et al., Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Solar Energy, 2021. 218: p. 525-531. https://doi.org/10.1016/j.solener.2021.02.063
- Liu, C., et al., Back contact interfacial modification in highly-efficient all-inorganic planar nip Sb2Se3 solar cells. ACS applied materials & interfaces, 2020. 12(34): p. 38397-38405. https://doi.org/10.1021/acsami.0c10629
- Shen, K., et al., Efficient and stable planar n-i-p Sb2Se3 solar cells enabled by oriented 1D trigonal selenium structures. Advanced science, 2020. 7(16): p. 2001013.
- Amin, A., et al., Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells. Solar Energy, 2022. 231: p. 1-7. https://doi.org/10.1016/j.solener.2021.11.009
- Lu, S., et al., In situ investigation of interfacial properties of Sb2Se3 heterojunctions. Applied Physics Letters, 2020. 116(24).
- Lin, L.-y., et al., Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. Journal of Physics and Chemistry of Solids, 2018. 122: p. 19-24. https://doi.org/10.1016/j.jpcs.2018.05.045
- Ahmadi, M., et al., Inverted polymer solar cells with sol-gel derived cesium-doped zinc oxide thin film as a buffer layer. Electronic Materials Letters, 2014. 10: p. 951-956. https://doi.org/10.1007/s13391-014-3374-5
- Guijarro, N., et al., Toward antimony selenide sensitized solar cells: efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. The Journal of Physical Chemistry Letters, 2012. 3(10): p. 1351-1356. https://doi.org/10.1021/jz3004365
- Ramavenkateswari, K. and P. Venkatachalam, Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electronic Materials Letters, 2016. 12: p. 628-637. https://doi.org/10.1007/s13391-016-6076-3
- Kim, T., et al., Confined growth of high-quality single-crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications. Electronic Materials Letters, 2021. 17: p. 347-354. https://doi.org/10.1007/s13391-021-00288-7
- Lu, S., et al., In situ investigation of interfacial properties of Sb2Se3 heterojunctions. Applied Physics Letters, 2020. 116(24).