DOI QR코드

DOI QR Code

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yue Wei (Water Conservancy Bureau of Jinchuan District) ;
  • Juan Wang (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yu-Wei Li (Department of Civil Engineering, Xi'an Jiaotong University) ;
  • Qing Sun (Department of Civil Engineering, Xi'an Jiaotong University)
  • 투고 : 2023.02.18
  • 심사 : 2023.11.17
  • 발행 : 2023.11.25

초록

Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

키워드

과제정보

The research work was financially supported by the National Natural Science Foundation of China (No. 52008228, 51978570), and was also funded by the project of SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation (No. 20211177-ZKT09). The support from the mentioned projects is gratefully acknowledged.

참고문헌

  1. Abu-Shamah, A. and Allouzi, R. (2020), "Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending", Steel Compos. Struct., 37(5), 533-549. https://doi.org/10.12989/scs.2020.37.5.533.
  2. Deng, R., Zhou, X.H., Wen, H., Li, R.F., Ji, W.D., Wang, Y.H. and Ren, W. (2023), "Torsional behaviour of tapered concrete-filled double-skin steel tubular columns with large hollow ratios", Thin Wall. Struct., 183, 110343. https://doi.org/10.1016/j.tws.2022.110343.
  3. Farahi, M., Heidarpour, A., Lignos, D.G., Zhao, X.L. and Al-Mahaidi, R.S. (2022), "Experimental investigation of the inelastic cyclic behavior of concrete-filled double-skin tubular beam-columns with corrugated inner skins and ultrahigh-strength corner tubes", J. Struct. Eng., 148(12), 04022190. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003493.
  4. GB 50936-2014 (2014), Technical code for concrete filled steel tubular structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. (in Chinese)
  5. Guo, L., Wang, J. and Zhang, M. (2020), "Modelling and experiment of semi rigid joint between composite beam and square CFDST column", Steel Compos. Struct., 34(6), 803-818. https://doi.org/10.12989/scs.2020.34.6.803
  6. Guo, L., Wang, J., Wang, W. and Ding, Z. (2021), "Component based moment-rotation model of composite beam blind bolted to CFDST column joint", Steel Compos. Struct., 38(5), 547-562. https://doi.org/10.12989/scs.2021.38.5.547.
  7. Han, L.H. (2016), Concrete Filled Steel Tubular Structures-Theory and Practice, Science Press, Beijing, China. (in Chinese)
  8. Han, L.H., Huang, H. and Zhao, X.L. (2009), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading", Thin Wall. Struct., 47(6-7), 668-680. https://doi.org/10.1016/j.tws.2008.11.008.
  9. Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004.
  10. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  11. Hsiao, P.C., Kazuhiro Hayashi, K., Nishi, R., Lin, X.C. and Nakashima, M. (2015), "Investigation of concrete-filled double-skin steel tubular columns with ultrahigh-strength steel", J. Struct. Eng., 141(7), 04014166. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001126.
  12. Li, T.J., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016), "Behavior of Q690 high-strength steel columns: Part 1: Experimental investigation", J. Constr. Steel Res., 123, 18-30. https://doi.org/10.1016/j.jcsr.2016.03.026.
  13. Liang, W., Dong, J. and Wang, Q. (2019), "Mechanical behaviour of concrete-filled double-skin steel tube (CFDST) with stiffeners under axial and eccentric loading", Thin Wall. Struct., 138, 215-230. https://doi.org/10.1016/j.tws.2019.02.002.
  14. Ma, D.Y. (2023). "Seismic performance of concrete-encased CFST column to RC beam joints: A practical model", J Build. Eng., 78, 107567. https://doi.org/10.1016/j.jobe.2023.107567.
  15. Shekastehband, B., Mohammadbagheri, S. and Taromi, A. (2018), "Seismic behavior of stiffened concrete-filled double-skin tubular columns", Steel Compos. Struct., 27(5), 577-598. https://doi.org/10.12989/scs.2018.27.5.577.
  16. Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 04016057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001513.
  17. T/CCES 7-2020 (2020), Technical Specification for Concrete-Filled Double Skin Steel Tubular Structures, China Civil Engineering Society; Beijing, China. (in Chinese)
  18. Tang, G., Xiao, Y. and Zhang, Y. (2015), "Study of bearing capacity and complete stress-strain curves for concrete filled square steel tube columns", Eng. Mech., 32(8), 103-111. (in Chinese)
  19. Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571.
  20. Wang, F., Young, B. and Gardner, L. (2021), "Testing and numerical modelling of circular CFDST cross-sections with stainless steel outer tubes in bending", Eng. Struct., 247, 113170. https://doi.org/10.1016/j.engstruct.2021.113170.
  21. Wang, F.C. and Han, L.H. (2019), "Analytical behavior of carbon steel-concrete-stainless steel double-skin tube (DST) used in submarine pipeline structure", Mar. Struct., 63, 99-116. https://doi.org/10.1016/j.marstruc.2018.09.001.
  22. Wang, J., Sun, Q. and Li, J. (2019), "Experimental study on seismic behavior of high-strength circular concrete-filled thin-walled steel tubular columns", Eng. Struct., 182, 403-415. https://doi.org/10.1016/j.engstruct.2018.12.098.
  23. Wang, J.T., Li, Y.W., Sun, Q. and Liu, X.H. (2023), "Experimental and analytical research on seismic performance of ECC-filled high-strength double skin steel tubular columns with out-of-code D/t ratios", Ocean Eng., 280, 114761. https://doi.org/10.1016/j.oceaneng.2023.114761.
  24. Yan, X.F., Zhao, Y.G. and Lin, S. (2021), "Compressive behaviour of circular CFDST short columns with high-and ultrahigh-strength concrete", Thin Wall. Struct., 164, 107898. https://doi.org/10.1016/j.tws.2021.107898.
  25. Yu, K.Q., Lu, Z.D., Dai, J.G. and Shah, S.P. (2020), "Direct tensile properties and stress-strain model of UHP-ECC", J. Mater. Civil Eng., 32(1), 04019334. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002975.
  26. Yu, M., Pei, X., Xu, L. and Ye, J. (2018), "A unified formula for calculating bending capacity of solid and hollow concrete-filled steel tubes under normal and elevated temperature", J. Constr. Steel Res., 141, 216-225. https://doi.org/10.1016/j.jcsr.2017.11.017.
  27. Zheng, Y., Wang, C. and Chen, M. (2022), "Flexural strength and stiffness of circular double-skin and double-tube concrete-filled steel tubes", Mar. Struct., 81, 103126. https://doi.org/10.1016/j.marstruc.2021.103126.
  28. Zhou, F. and Xu, W. (2016), "Cyclic loading tests on concrete-filled double-skin (SHS outer and CHS inner) stainless steel tubular beam-columns", Eng Struct., 127, 304-318. https://doi.org/10.1016/j.engstruct.2016.09.003.
  29. Zhou, J., Pan, J. and Leung, C.K. (2015), "Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression", J. Mater. Civil Eng., 27(1), 04014111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034.