DOI QR코드

DOI QR Code

Influence of flexoelectricity on bending of piezoelectric perforated FG composite nanobeam rested on elastic foundation

  • Ali Alnujaie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Alaa A. Abdelrahman (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Abdulrahman M. Alanasari (Department of Mechanical Engineering, Faculty of Engineering, University of Business and Technology) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2020.02.11
  • 심사 : 2023.10.17
  • 발행 : 2023.11.25

초록

A size dependent bending behavior of piezoelectrical flexoelectric layered perforated functionally graded (FG) composite nanobeam rested on an elastic foundation is investigated analytically. The composite beam is composed of regularly cutout FG core and two piezoelectric face sheets. The material characteristics is graded through the core thickness by power law function. Regular squared cutout perforation pattern is considered and closed forms of the equivalent stiffness parameters are derived. The modified nonlocal strain gradient elasticity theory is employed to incorporate the microstructure as well as nonlocality effects into governing equations. The Winkler as well as the Pasternak elastic foundation models are employed to simulate the substrate medium. The Hamiltonian approach is adopted to derive the governing equilibrium equation including piezoelectric and flexoelectric effects. Analytical solution methodology is developed to derive closed forms for the size dependent electromechanical as well as mechanical bending profiles. The model is verified by comparing the obtained results with the available corresponding results in the literature. To demonstrate the applicability of the developed procedure, parametric studies are performed to explore influences of gradation index, elastic medium parameters, flexoelectric and piezoelectric parameters, geometrical and peroration parameters, and material parameters on the size dependent bending behavior of piezoelectrically layered PFG nanobeams. Results obtained revealed the significant effects both the flexoelectric and piezoelectric parameters on the bending behavior of the piezoelectric composite nanobeams. These parameters could be controlled to improve the size dependent electromechanical as well as mechanical behaviors. The obtained results and the developed procedure are helpful for design and manufacturing of MEMS and NEMS.

키워드

과제정보

The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-64.

참고문헌

  1. Abdelrahman, A.A. and Eltaher, M.A. (2022), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 38(3), 2385-2411. https://doi.org/10.1007/s00366-020-01211-8.
  2. Abdelrahman, A.A., Abd El Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
  3. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021a), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Mathem. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
  4. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2022a), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 38, 169-190. https://doi.org/10.1007/s00366-020-01141-5.
  5. Abdelrahman, A.A., Saleem, H.A., Abdelhaffez, G.S. and Eltaher, M.A. (2023), "On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity", Mathematics, 11(5), 1162. https://doi.org/10.3390/math11051162.
  6. Abdelrahman, A.A., Ashry, M., Alshorbagy, A.E. and Waleed S Abdallah, (2021b), "On the mechanical behavior of two directional symmetrical functionally graded beams under moving load", Int. J. Mech. Mater. Des. 17., 563-586. https://doi.org/10.1007/s10999-021-09547-9.
  7. Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2022b), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput. 38(1), 415-435. https://doi.org/10.1007/s00366-020-01149-x.
  8. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
  9. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022c), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  10. Ali, I.A., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure", Mater. Res. Express, 9(4), 045701. https://doi.org/10.1088/2053-1591/ac5cae.
  11. Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A. and Sobhy, M. (2023), "Nonlinear dynamical performance of microsize piezoelectric bridge-type energy harvesters based upon strain gradient-based meshless collocation approach", Eng. Anal. Bound. Element., 151, 199-215. https://doi.org/10.1016/j.enganabound.2023.03.002.
  12. Ansari, R., Faraji Oskouie, M., Nesarhosseini, S. and Rouhi, H. (2021), "Flexoelectricity effect on the size-dependent bending of piezoelectric nanobeams resting on elastic foundation", Appl. Phys. A, 127, 518. https://doi.org/10.1007/s00339-021-04654-y.
  13. Ansari, R., Nesarhosseini, S., Faraji Oskouie, M. and Rouhi, H. (2021), "Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model", Europ. Phys. J. Plus, 136, 1-13. https://doi.org/10.1140/epjp/s13360-021-01837-7
  14. Arefi, M. and Zenkour, A.M. (2017), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123, 1-13. https://doi.org/10.1007/s00339-017-0801-0.
  15. Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90. https://doi.org/10.12989/scs.2022.43.1.079.
  16. Attia, M.A. and Abdelrahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  17. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimens. Syst. Nanostruct, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
  18. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Mathem. Modelling, 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
  19. Chu, L., Dui, G. and Ju, C. (2018), "Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory", Compos. Struct., 186, 39-49. https://doi.org/10.1016/j.compstruct.2017.10.083.
  20. De Rosa, M.A. and Maurizi, M.J. (1998), "The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams-exact solution", J. Sound Vib., 212(4), 573-581. https://doi.org/10.1006/jsvi.1997.1424.
  21. Ebrahimi, F., Karimiasl, M. and Singhal, A. (2021), "Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation", Eng. Comput., 37, 1007-1014. https://doi.org/10.1007/s00366-019-00869-z.
  22. Eftekhari, S.A. and Toghraie, D. (2022), "Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects", Appl. Mathem. Comput., 419, 126867. https://doi.org/10.1016/j.amc.2021.126867.
  23. Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Mathem. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  24. Eltaher, M.A., Abdelmoteleb, H.E., Daikh, A.A. and Abdelrahman, A.A. (2021), "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Steel Compos. Struct., 41(4), 505-520. https://doi.org/10.12989/scs.2021.41.4.505.
  25. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear gradation of nano-Timoshenko beam considering the neutral axis position", Appl. Mathem. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  26. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  27. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struc., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  28. Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
  29. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
  30. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  31. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  32. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
  33. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2023), Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
  34. Ezzat, M.A. and Al-Muhiameed, Z.I. (2022), "Thermo-mechanical response of size-dependent piezoelectric materials in thermos-viscoelasticity theory", Steel Compos. Struct., 45(4), 535-546. https://doi.org/10.12989/scs.2022.45.4.535.
  35. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  36. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-54. https://doi.org/10.12989/scs.2020.35.4.545.
  37. Gao, G., Cagin, T. Goddard, W.A. III (1998), "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9(3), 184. https://doi.org/10.1088/0957-4484/9/3/007.
  38. Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999), "Mechanismbased strain gradient plasticity-I.", Theory. J. Mech. Phys. Solids, 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3.
  39. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https ://doi.org/10.1007/BF00261375.
  40. Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2022), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 38(1), 209-230. https://doi.org/10.1007/s00366-020-01063-2.
  41. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", Proc Koninklijke Nederl Akaad van Wetensch. https://hal.archives-ouvertes.fr/hal-00852443.
  42. Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
  43. Li, H.N., Wang, W., Li, C. and Yao, L.Q. (2022), "Static bending and buckling analysis of rotating piezoelectric nanobeams", In 2022 16th Symposium on Piezoelectricity", Acoustic Waves, and Device Applications (SPAWDA), 391-395. https://doi.org/10.1109/SPAWDA56268.2022.10046044
  44. Liang, X., Hu, S. L. and Shen, S.P. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020.
  45. Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020.
  46. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012.
  47. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
  48. Malikan, M. and Eremeyev, V.A. (2020a), "On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution", Nanomaterials, 10(9), 1762. https://doi.org/10.3390/nano10091762.
  49. Malikan, M. and Eremeyev, V.A. (2020b), "On the dynamics of a visco-piezo-flexoelectric nanobeam", Symmetry, 12(4), 643. https://doi.org/10.3390/sym12040643.
  50. Mehralian, F. and Beni, Y.T. (2018), "Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory", J. Brazil. Soc. Mech. Sci. Eng., 40(1), 1-15. https://doi.org/10.1007/s40430-017-0938-y.
  51. Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W. and Eltaher, M.A. (2022), "Dynamic analysis of a piezoelectrically layered perforated nonlocal strain gradient nanobeam with flexoelectricity", Mathematics, 10(15), 2614. https://doi.org/10.3390/math10152614.
  52. Mindlin, R.D. (1962), Influence of Couple-Stresses on Stress Concentrations. Columbia University, New York
  53. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
  54. Mohamed, N., Eltaher, M.A, Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  55. Mohammadi, M., Farajpour, A. and Rastgoo, A. (2023), "Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam", Acta Mechanica, 1-24. https://doi.org/10.1007/s00707-022-03430-0.
  56. Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Abdelrahman, A.A. (2022), "Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements methods", Steel Compos. Struct., 45(5), 697-713. https://doi.org/10.12989/scs.2022.45.5.697.
  57. Najafi, M. and Ahmadi, I. (2022), "Nonlocal layerwise theory for bending, buckling and vibration analysis of functionally graded nanobeams", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-022-01605-w.
  58. Nan, Z., Xie, Z., Shijie, Z. and Dejin, C. (2020), "Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams", Smart Mater. Struct., 29(4), 045025. https://doi.org/10.1088/1361-665X/ab73e4.
  59. Ouakad, H.M. and Sedighi, H.M. (2019), "Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern", Int. J. Non-Linear Mech., 110, 44-57. https://doi.org/10.1016/j.ijnonlinmec.2018.12.011.
  60. Qi, L., Zhou, S. and Li, A. (2016), "Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect", Compos. Struct., 135, 167-175. https://doi.org/10.1016/j.compstruct.2015.09.020.
  61. Rapaport, D.C. (2004) The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge
  62. Ren, Y.M., Schiavone, P. and Qing, H. (2022), "On well-posed integral nonlocal gradient piezoelectric models for static bending of functionally graded piezoelectric nanobeam", Europ. J. Mech.-A/Solids, 96, 104735. https://doi.org/10.1016/j.euromechsol.2022.104735.
  63. Sedighi, H.M. (2014a), "The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions", Int. J. Appl. Mech., 6(03), 1450030. https://doi.org/10.1142/S1758825114500306.
  64. Sedighi, H.M. (2014b), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.
  65. Selvamani, R., Rexy, J.B. and Ebrahimi, F. (2022), "Finite element modeling and analysis of piezoelectric nanoporous metal foam nanobeam under hygro and nonlinear thermal field", Acta Mechanica, 233(8), 3113-3132. https://doi.org/10.1007/s00707-022-03263-x.
  66. Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli, A. (2020), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183. https://doi.org/10.12989/anr.2020.9.3.183.
  67. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  68. Sun, Y., Shen, S., Deng, W., Tian, G., Xiong, D., Zhang, H. and Yang, W. (2023), "Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity", Nano Energy, 105, 108024. https://doi.org/10.1016/j.nanoen.2022.108024.
  69. Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798.
  70. Wang, K.F., Wang, B.L. and Zeng, S. (2018), "Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting", Compos. Struct., 187, 48-57. https://doi.org/10.1016/j.compstruct.2017.12.040.
  71. Wang, X. and Xue, Y. (2023), "Investigation of the electric response of the piezoelectric curved beam considering the direct piezoelectric and flexoelectric effects", Thin-Wall. Struct., 188, 110839. https://doi.org/10.1016/j.tws.2023.110839.
  72. Xu, X.J., Deng, Z.C. and Wang, B. (2013), "Closed solutions for the electromechanical bending and vibration of thick piezoelectric nanobeams with surface effects", J. Phys. D: Appl. Phys., 46(40), 405302. https://doi.org/10.1088/0022-3727/46/40/405302.
  73. Yan, Z. and Jiang, L.Y. (2013), "Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams", J. Appl. Phys., 113(19), 194102. https://doi.org/10.1063/1.4804949.
  74. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  75. Yu, P., Leng, W., Peng, L., Suo, Y. and Guo, J. (2021), "The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect", Result. Phys., 28, 104624. https://doi.org/10.1016/j.rinp.2021.104624.
  76. Zeng, S., Wang, K., Wang, B. and Wu, J. (2020), "Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory", Appl. Mathem. Mech., 41(6), 859-880. https://doi.org/10.1007/s10483-020-2620-8.
  77. Zhang, N., Zheng, S. and Chen, D. (2022), "Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams", Meccanica, 57(7), 1505-1518. https://doi.org/10.1007/s11012-022-01506-8.
  78. Zhao, X., Zheng, S. and Li, Z. (2020), "Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams", Thin-Wall. Struct., 151, 106754. https://doi.org/10.1016/j.tws.2020.106754.
  79. Zhao, X., Zheng, S. and Li, Z. (2022), "Bending, free vibration and buckling analyses of AFG flexoelectric nanobeams based on the strain gradient theory", Mech. Adv. Mater. Struct., 29(4), 548-563. https://doi.org/10.1080/15376494.2020.1779880.
  80. Zheng, Y.F., Qu, D.Y., Liu, L.C. and Chen, C.P. (2023), "Size-dependent nonlinear bending analysis of nonlocal magneto-electro-elastic laminated nanobeams resting on elastic foundation", Int. J. Non-Linear Mech., 148, 104255. https://doi.org/10.1016/j.ijnonlinmec.2022.104255.
  81. Zhou, X., Shen, B., Lyubartsev, A., Zhai, J. and Hedin, N. (2022), "Semiconducting piezoelectric heterostructures for piezo-and piezophotocatalysis", Nano Energy, 107141. https://doi.org/10.1016/j.nanoen.2022.107141.
  82. Zou, X., Yan, G., Wu, W., Yang, W., Shi, W. and Sun, Y. (2023), "Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS", Steel Compos. Struct., 46(4), 485-495. https://doi.org/10.12989/scs.2023.46.4.485