Acknowledgement
The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-64.
References
- Abdelrahman, A.A. and Eltaher, M.A. (2022), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 38(3), 2385-2411. https://doi.org/10.1007/s00366-020-01211-8.
- Abdelrahman, A.A., Abd El Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
- Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021a), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Mathem. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
- Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2022a), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 38, 169-190. https://doi.org/10.1007/s00366-020-01141-5.
- Abdelrahman, A.A., Saleem, H.A., Abdelhaffez, G.S. and Eltaher, M.A. (2023), "On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity", Mathematics, 11(5), 1162. https://doi.org/10.3390/math11051162.
- Abdelrahman, A.A., Ashry, M., Alshorbagy, A.E. and Waleed S Abdallah, (2021b), "On the mechanical behavior of two directional symmetrical functionally graded beams under moving load", Int. J. Mech. Mater. Des. 17., 563-586. https://doi.org/10.1007/s10999-021-09547-9.
- Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2022b), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput. 38(1), 415-435. https://doi.org/10.1007/s00366-020-01149-x.
- Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022c), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Ali, I.A., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure", Mater. Res. Express, 9(4), 045701. https://doi.org/10.1088/2053-1591/ac5cae.
- Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A. and Sobhy, M. (2023), "Nonlinear dynamical performance of microsize piezoelectric bridge-type energy harvesters based upon strain gradient-based meshless collocation approach", Eng. Anal. Bound. Element., 151, 199-215. https://doi.org/10.1016/j.enganabound.2023.03.002.
- Ansari, R., Faraji Oskouie, M., Nesarhosseini, S. and Rouhi, H. (2021), "Flexoelectricity effect on the size-dependent bending of piezoelectric nanobeams resting on elastic foundation", Appl. Phys. A, 127, 518. https://doi.org/10.1007/s00339-021-04654-y.
- Ansari, R., Nesarhosseini, S., Faraji Oskouie, M. and Rouhi, H. (2021), "Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model", Europ. Phys. J. Plus, 136, 1-13. https://doi.org/10.1140/epjp/s13360-021-01837-7
- Arefi, M. and Zenkour, A.M. (2017), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123, 1-13. https://doi.org/10.1007/s00339-017-0801-0.
- Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90. https://doi.org/10.12989/scs.2022.43.1.079.
- Attia, M.A. and Abdelrahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimens. Syst. Nanostruct, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Mathem. Modelling, 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
- Chu, L., Dui, G. and Ju, C. (2018), "Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory", Compos. Struct., 186, 39-49. https://doi.org/10.1016/j.compstruct.2017.10.083.
- De Rosa, M.A. and Maurizi, M.J. (1998), "The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams-exact solution", J. Sound Vib., 212(4), 573-581. https://doi.org/10.1006/jsvi.1997.1424.
- Ebrahimi, F., Karimiasl, M. and Singhal, A. (2021), "Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation", Eng. Comput., 37, 1007-1014. https://doi.org/10.1007/s00366-019-00869-z.
- Eftekhari, S.A. and Toghraie, D. (2022), "Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects", Appl. Mathem. Comput., 419, 126867. https://doi.org/10.1016/j.amc.2021.126867.
- Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Mathem. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A., Abdelmoteleb, H.E., Daikh, A.A. and Abdelrahman, A.A. (2021), "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Steel Compos. Struct., 41(4), 505-520. https://doi.org/10.12989/scs.2021.41.4.505.
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear gradation of nano-Timoshenko beam considering the neutral axis position", Appl. Mathem. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struc., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2023), Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
- Ezzat, M.A. and Al-Muhiameed, Z.I. (2022), "Thermo-mechanical response of size-dependent piezoelectric materials in thermos-viscoelasticity theory", Steel Compos. Struct., 45(4), 535-546. https://doi.org/10.12989/scs.2022.45.4.535.
- Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-54. https://doi.org/10.12989/scs.2020.35.4.545.
- Gao, G., Cagin, T. Goddard, W.A. III (1998), "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9(3), 184. https://doi.org/10.1088/0957-4484/9/3/007.
- Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999), "Mechanismbased strain gradient plasticity-I.", Theory. J. Mech. Phys. Solids, 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https ://doi.org/10.1007/BF00261375.
- Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2022), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 38(1), 209-230. https://doi.org/10.1007/s00366-020-01063-2.
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", Proc Koninklijke Nederl Akaad van Wetensch. https://hal.archives-ouvertes.fr/hal-00852443.
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
- Li, H.N., Wang, W., Li, C. and Yao, L.Q. (2022), "Static bending and buckling analysis of rotating piezoelectric nanobeams", In 2022 16th Symposium on Piezoelectricity", Acoustic Waves, and Device Applications (SPAWDA), 391-395. https://doi.org/10.1109/SPAWDA56268.2022.10046044
- Liang, X., Hu, S. L. and Shen, S.P. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020.
- Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020.
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012.
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
- Malikan, M. and Eremeyev, V.A. (2020a), "On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution", Nanomaterials, 10(9), 1762. https://doi.org/10.3390/nano10091762.
- Malikan, M. and Eremeyev, V.A. (2020b), "On the dynamics of a visco-piezo-flexoelectric nanobeam", Symmetry, 12(4), 643. https://doi.org/10.3390/sym12040643.
- Mehralian, F. and Beni, Y.T. (2018), "Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory", J. Brazil. Soc. Mech. Sci. Eng., 40(1), 1-15. https://doi.org/10.1007/s40430-017-0938-y.
- Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W. and Eltaher, M.A. (2022), "Dynamic analysis of a piezoelectrically layered perforated nonlocal strain gradient nanobeam with flexoelectricity", Mathematics, 10(15), 2614. https://doi.org/10.3390/math10152614.
- Mindlin, R.D. (1962), Influence of Couple-Stresses on Stress Concentrations. Columbia University, New York
- Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mohamed, N., Eltaher, M.A, Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Mohammadi, M., Farajpour, A. and Rastgoo, A. (2023), "Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam", Acta Mechanica, 1-24. https://doi.org/10.1007/s00707-022-03430-0.
- Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Abdelrahman, A.A. (2022), "Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements methods", Steel Compos. Struct., 45(5), 697-713. https://doi.org/10.12989/scs.2022.45.5.697.
- Najafi, M. and Ahmadi, I. (2022), "Nonlocal layerwise theory for bending, buckling and vibration analysis of functionally graded nanobeams", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-022-01605-w.
- Nan, Z., Xie, Z., Shijie, Z. and Dejin, C. (2020), "Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams", Smart Mater. Struct., 29(4), 045025. https://doi.org/10.1088/1361-665X/ab73e4.
- Ouakad, H.M. and Sedighi, H.M. (2019), "Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern", Int. J. Non-Linear Mech., 110, 44-57. https://doi.org/10.1016/j.ijnonlinmec.2018.12.011.
- Qi, L., Zhou, S. and Li, A. (2016), "Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect", Compos. Struct., 135, 167-175. https://doi.org/10.1016/j.compstruct.2015.09.020.
- Rapaport, D.C. (2004) The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge
- Ren, Y.M., Schiavone, P. and Qing, H. (2022), "On well-posed integral nonlocal gradient piezoelectric models for static bending of functionally graded piezoelectric nanobeam", Europ. J. Mech.-A/Solids, 96, 104735. https://doi.org/10.1016/j.euromechsol.2022.104735.
- Sedighi, H.M. (2014a), "The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions", Int. J. Appl. Mech., 6(03), 1450030. https://doi.org/10.1142/S1758825114500306.
- Sedighi, H.M. (2014b), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.
- Selvamani, R., Rexy, J.B. and Ebrahimi, F. (2022), "Finite element modeling and analysis of piezoelectric nanoporous metal foam nanobeam under hygro and nonlinear thermal field", Acta Mechanica, 233(8), 3113-3132. https://doi.org/10.1007/s00707-022-03263-x.
- Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli, A. (2020), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183. https://doi.org/10.12989/anr.2020.9.3.183.
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
- Sun, Y., Shen, S., Deng, W., Tian, G., Xiong, D., Zhang, H. and Yang, W. (2023), "Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity", Nano Energy, 105, 108024. https://doi.org/10.1016/j.nanoen.2022.108024.
- Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798.
- Wang, K.F., Wang, B.L. and Zeng, S. (2018), "Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting", Compos. Struct., 187, 48-57. https://doi.org/10.1016/j.compstruct.2017.12.040.
- Wang, X. and Xue, Y. (2023), "Investigation of the electric response of the piezoelectric curved beam considering the direct piezoelectric and flexoelectric effects", Thin-Wall. Struct., 188, 110839. https://doi.org/10.1016/j.tws.2023.110839.
- Xu, X.J., Deng, Z.C. and Wang, B. (2013), "Closed solutions for the electromechanical bending and vibration of thick piezoelectric nanobeams with surface effects", J. Phys. D: Appl. Phys., 46(40), 405302. https://doi.org/10.1088/0022-3727/46/40/405302.
- Yan, Z. and Jiang, L.Y. (2013), "Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams", J. Appl. Phys., 113(19), 194102. https://doi.org/10.1063/1.4804949.
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
- Yu, P., Leng, W., Peng, L., Suo, Y. and Guo, J. (2021), "The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect", Result. Phys., 28, 104624. https://doi.org/10.1016/j.rinp.2021.104624.
- Zeng, S., Wang, K., Wang, B. and Wu, J. (2020), "Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory", Appl. Mathem. Mech., 41(6), 859-880. https://doi.org/10.1007/s10483-020-2620-8.
- Zhang, N., Zheng, S. and Chen, D. (2022), "Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams", Meccanica, 57(7), 1505-1518. https://doi.org/10.1007/s11012-022-01506-8.
- Zhao, X., Zheng, S. and Li, Z. (2020), "Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams", Thin-Wall. Struct., 151, 106754. https://doi.org/10.1016/j.tws.2020.106754.
- Zhao, X., Zheng, S. and Li, Z. (2022), "Bending, free vibration and buckling analyses of AFG flexoelectric nanobeams based on the strain gradient theory", Mech. Adv. Mater. Struct., 29(4), 548-563. https://doi.org/10.1080/15376494.2020.1779880.
- Zheng, Y.F., Qu, D.Y., Liu, L.C. and Chen, C.P. (2023), "Size-dependent nonlinear bending analysis of nonlocal magneto-electro-elastic laminated nanobeams resting on elastic foundation", Int. J. Non-Linear Mech., 148, 104255. https://doi.org/10.1016/j.ijnonlinmec.2022.104255.
- Zhou, X., Shen, B., Lyubartsev, A., Zhai, J. and Hedin, N. (2022), "Semiconducting piezoelectric heterostructures for piezo-and piezophotocatalysis", Nano Energy, 107141. https://doi.org/10.1016/j.nanoen.2022.107141.
- Zou, X., Yan, G., Wu, W., Yang, W., Shi, W. and Sun, Y. (2023), "Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS", Steel Compos. Struct., 46(4), 485-495. https://doi.org/10.12989/scs.2023.46.4.485