DOI QR코드

DOI QR Code

A report of 20 unrecorded bacterial species in Korea, isolated from soils of coastal areas in 2022

  • Seung Hyeok Soung (Department of Microbial Biotechnology of Science & Technology, Mokwon University) ;
  • Jaeho Song (Division of Microbiology, Honam National Institute of Biological Resources) ;
  • Seung Yeol Shin (Division of Microbiology, Honam National Institute of Biological Resources) ;
  • Song-Ih Han (Department of Microbial Biotechnology of Science & Technology, Mokwon University)
  • Received : 2023.03.03
  • Accepted : 2023.08.11
  • Published : 2023.11.30

Abstract

To obtain unrecorded bacterial species in Korea, various soils of coastal areas were collected from the Republic of Korea in 2022. After plating the samples on marine agar and incubating aerobically and anaerobically, approximately 1,700 bacterial strains were isolated and identified using 16S rRNA gene sequences. A total of 20 strains showed ≥98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, indicating they are unrecorded bacterial species in Korea. The unrecorded bacterial strains belonged to four phyla, six classes, 15 orders, 16 families, and 19 genera which were assigned to Blastomonas and Sphingomonas of the class Alphaproteobacteria; Pseudidiomarina, Kushneria, Salinicola, and Salinisphaera of the class Gammaproteobacteria; Evansella, Virgibacillus, and Paenibacillus of the class Bacilli; Cyclobacterium of the class Cytophagia; Pedobacter of the class Sphingobacteriia; and Demequina, Ornithinimicrobium, Blastococcus, Jatrophihabitans, Kineococcus, Glaciihabitans, Aeromicrobium and Streptomyces of the class Actinomycetes. The details of the 20 unreported species, including Gram reaction, morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.

Keywords

Acknowledgement

This study was supported by the research grant "Survey of Coastal Area Indigenous Organisms (Prokaryotes)" (HNIBR 202201210) from Honam National Institute of Biological Resources of the Ministry of Environment in Korea.

References

  1. Chun, J., A. Oren, A. Ventosa, H. Christensen, D.R. Arahal, M.S. da Costa, A.P. Rooney, H. Yi, X.-W. Xu, S. De Meyer and M.E. Trujillo. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68:461-466. https://doi.org/10.1099/ijsem.0.002516
  2. Cho, S.H., J.-H. Yoon, S.-B. Kim, K.-Y. Jahng, J.-C. Cho, K. Joh, C.-J. Cha, C.-N. Seong, J.-W. Bae, W.-T. Im and C.O. Jeon. 2017. A report of 29 unrecorded bacterial species belonging to the phylum Bacteroidetes in Korea. J. Species Res. 6:119-128.
  3. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  4. Joung, Y., C.-J. Cha, W.-T. Im, C.-O. Jeon, K. Joh, S.-B. Kim, W. Kim, S.D. Lee and J.-C. Cho. 2018. A report on 24 unrecorded bacterial species of Korea isolated in 2016, belonging to the orders Rhizobiales and Sphingomonadales in the class Alphaproteobacteria. J. Species Res. 7:13-23.
  5. Jung, H.S., J.-H. Yoon, K. Joh, C.-N. Seong, W.-Y. Kim, W.-T. Im, M.-K. Kim, C.-J. Cha, S.-B. Kim and C.-O. Jeon. 2021. A report of 35 unrecorded bacterial species belonging to the classes Alphaproteobacteria and Betaproteobacteria in Korea. J. Species Res. 10:12-22.
  6. Khan, M.Y., Z.A. Zahir, H.N. Asghar and E.A. Waraich. 2017. Preliminary investigations on selection of synergistic halotolerant plant growth promoting rhizobacteria for inducing salinity tolerance in wheat. Pak. J. Bot. 49:1541-1551.
  7. Kumar, S., G. Stecher and K. Tamura. 2021. MEGA 11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027. https://doi.org/10.1093/molbev/msab120
  8. Mukhtar, S., M.S. Mirza, H.A. Awan, A. Maqbool, S. Mehnaz and K.A. Malik. 2016. Microbial diversity and metagenomic analysis of the rhizosphere of Para Grass(Urochloa mutica) growing under saline conditions. Pak. J. Bot. 48:779-791.
  9. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  10. Osland, M.J., N.M. Enwright, R.H. Day, C.A. Gabler, C.L. Stagg and J.B. Grace. 2015. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22:1-11.
  11. Rodriguez, R., J.J. Henson, V.E. Van, M. Hoy, L. Wrigh, F. Beckwith, Y. Kim and R.S. Redman. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-416. https://doi.org/10.1038/ismej.2007.106
  12. Ruppel, S., P. Franken and K. Witzel 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol. 40:940-951. https://doi.org/10.1071/FP12355
  13. Smith, D.L., S. Subramanian, J.R. Lamont and M. Bywater-Ekegard. 2015. Signaling in the phytomicrobiome: breadth and potential. Front. Plant Sci. 6:709.
  14. Upadhyay, S.K. and D.P. Singh. 2015. Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol. 17:288-293. https://doi.org/10.1111/plb.12173
  15. Van Horn, D.J., J.G. Okie, H.N. Buelow, M.N. Gooseff, J.E. Barrett and C.D. Takacs-Vesbach. 2014. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl. Environ. Microbiol. 80:3034-3043. https://doi.org/10.1128/AEM.03414-13
  16. Yang, J., J.W. Kloepper and C. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14(1):1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  17. Yang, S.-J. and J.-C. Cho. 2008. Gaetbulibacter marinus sp. nov., isolated from coastal seawater and emended description of the genus Gaetbulibacter. Int. J. Syst. Evol. Microbiol. 58:315318.
  18. Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and wholegenome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617. https://doi.org/10.1099/ijsem.0.001755
  19. Yuan, L.R., P. Xin, J. Kong, L. Li and D. Lockington. 2011. A coupled model for simulating surface water and groundwater interactions in coastal wetlands. Hydrol. Process 25:3533-3546. https://doi.org/10.1002/hyp.8079